
Constraint-Based In-Station Train Dispatching
Andreas Schutt #

Data61, CSIRO, Melbourne, Australia

Matteo Cardellini #

DIBRIS, University of Genova, Italy

Jip J. Dekker #

Department of Data Science and Artificial Intelligence, Monash University, Clayton, Australia
ARC Training Centre in Optimisation Technologies, Integrated Methodologies, and Applications
(OPTIMA), Melbourne, Australia

Daniel Harabor #

Department of Data Science and Artificial Intelligence, Monash University, Clayton, Australia

Marco Maratea #

Department of Mathematics and Informatics, University of Calabria, Rende, Italy

Mauro Vallati #

Department of Computer Science, University of Huddersfield, UK

Abstract
In-station dispatching is the problem of planning the movements of scheduled trains inside a railway
station. Effective solutions for in-station dispatching are important for maximising the utilisation of
railway infrastructure and for mitigating the impact of incidents and delays in the broader network.

In this paper, we explore a constraint-based approach to perform in-station train dispatching.
Our extensive empirical analysis of multiple modelling, search strategy, and solver choices, performed
over synthetically generated, yet realistic, data, shows that our method outperforms the existing
planning-based state-of-the-art approach. In addition, we present different optimisation criteria,
which can be effortless defined thanks to the constraint-based approach.

2012 ACM Subject Classification Applied computing → Operations research; Computing methodo-
logies → Planning and scheduling

Keywords and phrases in-station train dispatching, train scheduling, railway scheduling, constraint
programming, mixed-integer programming

Digital Object Identifier 10.4230/LIPIcs.CP.2025.33

Supplementary Material Dataset: https://github.com/ShortestPathLab/train_dispatching_
benchmark

1 Introduction

Railways play a significant economical role in our society for transporting either goods
or passengers, but the increasing volume of people and freight transported on railways is
congesting the networks [4]. Train traffic control in railway networks deals with the problem
of finding appropriate routes for trains to respect a given timetable, and is usually divided
into two main areas: line dispatching [20] and in-station train dispatching [6].1 The former
considers the overall railway network and the routing of trains between different railway
stations. The latter is focused on the routing of trains inside a specific station; to deal with
delays and disruptions and minimise their overall negative impacts, such as cost penalties for
the rail operator and inconveniences for passengers.

1 We note that both or a combination of both problems are sometimes referred as train or railway
scheduling problem in the operation research and constraint programming community.

© Andreas Schutt, Matteo Cardellini, Jip J. Dekker, Daniel Harabor, Marco Maratea, and Mauro
Vallati;
licensed under Creative Commons License CC-BY 4.0

31st International Conference on Principles and Practice of Constraint Programming (CP 2025).
Editor: Maria Garcia de la Banda; Article No. 33; pp. 33:1–33:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andreas.schutt@csiro.au
https://orcid.org/0000-0001-5452-4086
mailto:matteo.cardellini@edu.unige.it
https://orcid.org/0000-0003-3788-9475
mailto:jip.dekker@monash.edu
https://orcid.org/0000-0002-0053-6724
mailto:daniel.harabor@monash.edu
https://orcid.org/0000-0001-6828-7712
mailto:marco.maratea@unical.it
https://orcid.org/0000-0002-9034-2527
mailto:m.vallati@hud.ac.uk
https://orcid.org/0000-0002-8429-3570
https://doi.org/10.4230/LIPIcs.CP.2025.33
https://github.com/ShortestPathLab/train_dispatching_benchmark
https://github.com/ShortestPathLab/train_dispatching_benchmark
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

33:2 Constraint-Based In-Station Train Dispatching

Despite its importance, the in-station train dispatching problem is often handled manually
by experienced operators in charge of one or more connected stations [21, 17, 6]. These
operators monitor the situation inside a station and instruct train conductors about which
path to follow and when. Operators receive limited support from railway control systems
(e.g., RailSys, a popular software package originally developed for Deutsche Bahn) which
focus mainly on operational performance indicators and operator support services, such as
simulation and validation to measure the quality of human-driven decision-making (see, e.g.,
[12]). These limitations exist, in part, because in-station train dispatching is a hard complex
problem falling in the class of job-shop scheduling problems [19]. Typically, there are three
key decisions to be made for each train: what time it should enter the station, which path
(including the platform) it should take, and how long it should dwell at the platform. A
main complication is that each train needs to be routed through the station such that its
occupation of track segments does not overlap with that of other trains.

Several notable works appear in the research literature, which attempt to address the in-
station dispatching problem automatically. Mannino and Mascis [21] developed a specialised
algorithm that offers real-time re-scheduling over a 1.5 hour planning horizon, but limited to
just a few (≤ 8) trains. Their dataset is no longer available. Meanwhile, Kumar et al. [17]
consider a CP-based optimisation method which tackles up to 23 trains and substantially
larger station layouts. Unfortunately, this approach requires several minutes to solve one
instance, decisions for most of the trains are already fixed a priori, and solutions are limited
to a small time horizon (10 minutes). Their datasets are not available. Recently, Cardellini et
al. [6] made a significant step with a method based on automated planning. Their approach
models the problem using PDDL+ [13] and uses a modified version of the planning engine
ENHSP [25, 26] for solving. This system can tackle more trains (30+) over a larger time
horizon (2+ hours) with solutions computed in just seconds. For confidentiality reasons,
their datasets are also not available.
In this paper, we make substantial new contributions to in-station train dispatching:

1. We develop a new constraint-based model using the modelling language MiniZinc [28].
MiniZinc has several compelling advantages compared to PDDL+: it is easier to under-
stand, it does not change for every instance, and it offers the opportunity to explore
a range of solution approaches, including different objectives, solving technologies and
search strategies.

2. We generate and make available a new benchmark dataset, which is synthetic but based
on real historical data. Modelled on a typical medium-sized Italian railway station, we
generate a range of problem instances with up to 50 trains over a several hour time
horizon – substantially larger than problems previously appearing in the literature.

3. We analyse the performance of our approach using a range of solvers and two different
objectives: makespan and sum of (individual train) endtimes. Results show that our
method is competitive in terms of runtime to the PDDL+ planning approach in [6]:
we solve more problems overall, we can usually find a first solution with a comparable
runtime of just seconds, and we solve most problems to optimality given a few minutes.

We report results for a wide range of solving technologies including constraint programming
(CP) and mixed-integer programming (MIP) solvers, i.e., Chuffed, Google’s OR-Tools solver
CP-SAT, IBM ILOG CP Optimizer, and Gurobi. We believe this is the largest evaluation
and empirical comparison yet undertaken for in-station train dispatching.

A. Schutt, M. Cardellini, J. J. Dekker, D. Harabor, M. Maratea, and M. Vallati 33:3

2 Related Work

In the broader topic of railway traffic control, most works deal with the problem of finding
appropriate routes for trains, usually regarding a given official timetable [30]. By contrast, we
focus on the problem of in-station train dispatching, where the main challenge is optimising
the movement of trains inside stations. Given the hard combinatorial nature of the problem,
many works have focused on related sub-problems or on a more abstract formulation of the
overall problem. Rodriguez [24] formulated a CP model for performing train scheduling at a
junction, which shares some characteristics of a station, but does not include platforms and
stops. Other works such as [7, 3, 8] focused on the problem of assigning trains to available
platforms, given the timetable and a set of operational constraints, without focusing on
the paths that trains should follow to reach the platforms. Meanwhile, Caprara et al. [5]
analysed a different perspective and focused on the identification and evaluation of recovery
strategies to be applied in case of delays of one or more trains arriving at the controlled
station. These strategies include actions such as the use of backup platforms or alternative
paths, and are assumed to be readily applicable.

A few works have directly addressed the in-station train dispatching problem. We
discussed these works in Section 1 but give more details here. Mannino and Mascis [21]
introduced a MIP model for controlling a metro station. Their approach, evaluated on data
from a medium-sized Milanese metro station, can effectively manage delays by re-scheduling
trains in real-time (1 second per solve iteration). Unfortunately, the approach is limited to
small numbers of trains. In Kumar et al. [17] authors consider a CP model for performing
in-station train dispatching for a busy Indian terminal. Their approach can deal with a large
railway station and more trains, but at the cost of considering only very short time horizons
(less than 10 minutes). The approach depends on station-specific optimisations, which means
the model and associated gains are not easily generalised to other settings. Another drawback
is the approach used to model non-overlap constraints, which ensure paths assigned to trains
are collision-free. Their proposed model employs sub-paths of train routes and platforms
where a sub-path is a path from one signal/semaphore (see Section 3) to another one (not
necessarily the next one) and, thus, it is a higher abstract level than a track segment. Using
this approach, trains need to wait until an entire sub-path is released before they can use
any track segment that is part of the sub-path. This eliminates some plans and could be
avoided if (as in our approach) the non-overlapping constraints were modelled over track
segments. A final difference is evaluation, where reported results are all produced by a single
solver: IBM ILOG CP Optimizer.

The most recent and closer work to ours is from Cardellini et al. [6]. In this paper,
as already mentioned in the introduction, the authors presented an approach based on
automated planning with PDDL+, a mixed discrete-continuous extension of the standard
PDDL language. A modified version of the PDDL+ planning engine ENHSP is then used for
solving. The approach was validated on historical data of a medium-sized railway station
from the North-West of Italy provided by Rete Ferroviaria Italiana (RFI), but because of
confidentiality issues the authors could not share the data.

Other related CP methods are proposed in [14, 22]. Geske [14] proposed a CP approach
for simulating the train timetable for parts of the German railway network, which combines
line and in-station train dispatching. The CP model uses the global constraints cumulative
and diffn for modelling the non-overlapping constraints over track segments, and the method
stops once a solution is found. Masoud et al. [22] implemented a CP model in IBM ILOG
CP Optimizer for scheduling coal trains between mines and a port in Australia using the

CP 2025

33:4 Constraint-Based In-Station Train Dispatching

W+

W-

E-

E+

Platform 1

Platform 2

Platform 3

Platform 4

Platform 5

5,2 9,2
1,3 2,3 3,3 4,3 5,3 9,3 10,3 11,3 12,3 13,3

1,4 2,4 3,4 4,4 5,4 9,4 10,4 11,4 12,4 13,4

Figure 1 The diagram of the railway station under consideration (adapted from https://github.
com/matteocarde/icaps2021).

global constraint disjunctive for modelling non-overlapping constraints on tracks between
junction points. Their method minimises the makespan while also considering coal demand
constraints at the port. A similar problem, and associated CP-model, is developed for
freight-rail capacity-evaluation in [15]. We also note that the MiniZinc Challenge [28] has two
CP models “train” and “train-scheduling” for line dispatching, but there is no information
on their background and origin.

Compared to the CP models in the literature, we model the non-overlapping constraints
over individual track segments, which allows a “tight” scheduling of trains leading to fewer
delays. We also explore the usage of redundant constraints to strengthen the model, which
has not been done before to the best of our knowledge in this context, and investigate the
impact of three solution objectives and four solvers on the solving performance.

3 Problem Description and Model

First, we provide the necessary background for the considered in-station dispatching problem.
Next, we introduce our basic constraint-based model and additional redundant constraints
to strengthen propagation. Then we introduce different solution objectives and finally we
discuss search strategies.

3.1 Problem Description
Figure 1 provides an example structure of a railway station. A railway station can be
represented as a graph, composed by a set of connected track segments, i.e., the minimal
controllable rail units. Their status can be checked via track circuits, that provide information
about occupation of the segment and about corresponding timings. Track segments can
be divided into two classes, stopping points and interlocking. A stopping point is a track
segment in which a train can stop: this is possible if there is a connected platform, i.e., a
point in the station used to embark/disembark the train (in green in Figure 1), or at the
entrance and the exit points of the railway station (indicated as E and W in the figure).
Entry points are segments where the train stops before being allowed to enter into the station
(or queues behind other trains); similarly, exit points allow the train to leave the station and
enter the outside railway network.

Sequences of connected track segments are organised in itineraries: this is manually done
by experts at the specific railway station. While track segments are the minimal controllable
units of a station, itineraries describe paths that the trains will follow in order to move
within the station. Semaphores are positioned in the station at specific points, and that are
the only points at which trains are allowed to stop, usually signalling the beginning and the
end of an itinerary. Intuitively, trains are only allowed to stop at the end of an itinerary,
where semaphores are placed. For example, all trains in Figure 1 consists of two itineraries.
The first one from the station entrance to the end of the platform in their direction and the
second one, the first track segment after the end of the platform till the station exit.

https://github.com/matteocarde/icaps2021
https://github.com/matteocarde/icaps2021

A. Schutt, M. Cardellini, J. J. Dekker, D. Harabor, M. Maratea, and M. Vallati 33:5

A track segment can be occupied by a single train at the time. For safety reasons, a train
is required to reserve an itinerary, and this can be done only if the itinerary is currently not
being used by another train. While a train is navigating the itinerary, the track segments left
by the train are released. This is done to allow trains to early reserve itineraries even if they
share a subset of the track segments. A train occupies a track segment for a duration that
depends on many variables; e.g., type of the train, length of the train, position of the segment
within the itinerary, and weather. Based on historical data, when available, corresponding
values can be estimated for planning purposes. A train going through the controlled railway
station is running a route in the station, by reserving an itinerary and moving through the
corresponding track segments.

Finally, a timetable is the schedule that includes information about when trains arrive
at the controlled station, when they arrive at a platform, and the time when they leave
a platform. Figure 2 shows a non-overlapping schedule of three trains moving across the
station from Figure 1. We show temporal reservations for itineraries leading to and leaving
from each platform. In this example, the orange train overtakes the red train via Platform 3.
Currently, human train dispatchers rely on tools to visualise the conditions of the controlled
station. When making re-scheduling decisions they use data such as occupied track segments
(similar to Figure 2), timetable information and extensive communication with train drivers
and personnel in the station. Dispatchers operate in real-time and mostly on a reactive basis,
according to the arrival time of trains. They are guided by an intuitive understanding about
the quality of potential decisions and their knock-on effects.

3.2 Constraint-based Model
The in-station train dispatching problem can be characterised by the tuple (T, E), where
T = {1, 2, . . . } is the set of trains and E = {1, 2, . . . } is the set of track segments in the
station. A train t ∈ T is specified by its earliest start time sT

t ∈ Z, and a set of possible
routes Rt ⊆ Z through the station.

For the purposes of our model, we distinguish between four train types yT
t ∈ {std, ori, des,

van}. Here std is a standard train that enters and exits the station, to and from the external
network; ori is an origin train that start at a platform from the beginning of the planning
horizon and subsequently exits the station; des is a destination train that enters the station,
terminates at a platform, and occupies the platform for the remaining planning horizon, and;
van is a vanishing train that enters the station, terminates at a platform, and “vanishes”
from the station after completing its stop. A vanishing train models the case when the train
leaves the station into the train yard or side-track, which is assumed to always have enough
capacity.

A route r ∈ Rt of a train t is a sequence of itineraries forming the path of the train
through the station. Its grounded representation is modelled as a sequence of temporal
reservation blocks Br = {i, i + 1, . . . , j}, where i, j ∈ Z and i < j, and the integers represent
the indices of the blocks. A block b ∈ Br of route r specifies a track segment eB

b ∈ E and
a reservation duration dB

b ∈ Z+
0 , excluding dwell time (defined below). A train occupies a

block b starting from the sum of the end time of its previous block in the sequence Br and a
start offset time oB

b ∈ Z. If b is the first block in the sequence, the start offset time is zero.
When moving through a platform, a train has a minimal dwell time lR

r ∈ Z+
0 = {0, 1, . . . }.

We note that even if a train does not take passengers at the station, it might be allowed to
stop at the platform, e.g., waiting for a green signal or a passing of another train through
a different platform. However, the minimal dwell time is zero. Similarly, we also define a
minimal duration for a train to move through the station dR

r ∈ Z, excluding the dwell time.

CP 2025

33:6 Constraint-Based In-Station Train Dispatching

Platform 2
0

Platform 3
0

Platform 4
0

W+ E-

W+ E-

W- E+

5,2 9,21,3 2,3 3,3 4,3 10,3 11,3 12,3 13,3

1,3 2,3 3,3 4,3 5,3 9,3 10,3 11,3 12,3 13,3

1,4 2,4 3,4 4,4 5,4 9,4 10,4 11,4 12,4 13,4

Figure 2 Three Gantt charts of a train schedule of three trains across the station shown in
Figure 1, in which the x-axis corresponds to track segments of one route through the station and the
y-axis the time. The red, orange, and blue train enters the station at W+, W+, and E+, exits at
E-, E-, and W-, and drives via Platform 2, 3, and 4, respectively. The coloured rectangles show the
reservation times of the corresponding track segment in the station shown in Figure 1 for each train.

As dwell times are optional, we use a Boolean parameter pB
b ∈ {⊤, ⊥} which is true (⊤)

if the block b can contain a non-zero dwell time (i.e., if the train can stop at the block’s
segment eB

b) and false (⊥) otherwise; the parameter tB
b ∈ T refers to the corresponding train.

We denote by B the union of all blocks, i.e.,
⋃

t∈T

⋃
r∈Rt

Br.

Decision Variables. The problem has three variables for each train t, which are the start
time variable sT

t modelling when trains enter the station or depart from the platform for
origin trains, the route variable rT

t for selecting the route through the station, and the dwell
time variable wT

t for modelling the duration a train stops at the platform. In addition, we
have optional start time variables sB

b and duration variables dB
b for each block b, which are

used for modelling non-overlapping constraints for each segment in the station. An optional
variable is a variable that might be a part of a solution or not. It can be understood as a
pair of the integer variables and a Boolean variable that indicates whether the variable is
present or absent in a solution. In our case, whether a train traverses a particular segment
depends solely on which route has been selected in a solution. Thus, related block variables
to that route should be present in the solution while the others absent. All variables are
(optional) integer variables.

A. Schutt, M. Cardellini, J. J. Dekker, D. Harabor, M. Maratea, and M. Vallati 33:7

Constraints. Equations (1–20) show all the constraints of our basic model: (1–5) are the
core constraints, (6–11) link the different decision and block variables together, and (12–20)
impose bounds on the variables. The constants H and H represent the start and end time
of the planning horizon. The start time is simply mint∈T sT

t , whereas for the end time we
compute a trivial upper bound by scheduling the trains on a single track starting with origin
trains and ending with destination trains.

disjunctive(Start, Dur)
∀e ∈ E : Start = {s̃B

b | b ∈ B : eB
b = e},

Dur = {d̃B
b | b ∈ B : eB

b = e}
(1)

s̃B
b = occurs(sB

b) ⊙ H

d̃B
b = dB

b + (sB
b − H)

∀b ∈ B : pB
b = ⊤ ∧ yT

tB
b

= ori (2)

s̃B
b = sB

b d̃B
b = dB

b + H ∀b ∈ B : pB
b = ⊤ ∧ yT

tB
b

= des (3)

s̃B
b = sB

b d̃B
b = dB

b ∀b ∈ B : pB
b = ⊥ ∨ yT

tB
b

∈ {std, van} (4)

sT
t1

≤ sT
t2

∀(t1, t2) ∈ O (5)
rT

t = r → sT
t = sB

min(Br) ∀t ∈ T, ∀r ∈ Rt (6)

rT
t = r ↔ occurs(sB

min(Br)) ∀t ∈ T, ∀r ∈ Rt (7)

dB
b = dB

b ∀b ∈ B : pB
b = ⊥ (8)

dB
b = dB

b + wT
tB

b
∀b ∈ B : pB

b = ⊤ (9)

sB
b = sB

b−1 ⊕ dB
b−1 ⊕ oB

b

∀t ∈ T, ∀r ∈ Rt, ∀b ∈ Br \ {min(Br)} :
¬(pB

b−1 = ⊤ ∧ pB
b = ⊥)

(10)

sB
b = sB

b−1 ⊕ dB
b−1 ⊕ oB

b ⊕ wT
t

∀t ∈ T, ∀r ∈ Rt, ∀b ∈ Br \ {min(Br)} :
pB

b−1 = ⊤ ∧ pB
b = ⊥

(11)

rT
t = r → lR

r ≤ wT
t ∀t ∈ T, ∀r ∈ Rt : pR

r = ⊤ (12)
rT

t = r → wT
t = 0 ∀t ∈ T, ∀r ∈ Rt : pR

r = ⊥ (13)
wT

t ≤ maxr∈Rt lR
r ∀t ∈ T : yT

t = van (14)
wT

t = 0 ∀t ∈ T : yT
t = ori (15)

sT
t ≤ sT

t ≤ H ∀t ∈ T (16)
min(Rt) ≤ rT

t ≤ max(Rt) ∀t ∈ T (17)
0 ≤ wT

t ≤ H − H ∀t ∈ T (18)
H ≤ sB

b ≤ H ∀b ∈ B (19)
0 ≤ dB

b ≤ H − H ∀b ∈ B (20)

Constraints (1–4) ensure train reservations are non-overlapping. We model this using
the global constraint disjunctive for each segment e ∈ E in our network (1). The disjunctive
constraint guarantees a non-overlapping execution of tasks specified by their start time
variables and their duration variables. In our case, we create an optional task by optional
start time variables s̃B

b and duration variables d̃B
b for each block b that corresponds to the

segment e. Both variables are assigned using their block variables sB
b and dB

b accounting for
the type of train and whether there is a stop at the block. There are three cases to consider,
depending on the type of train.

The first case (Constraint 2) covers an origin train at the stop, that is, at the platform. In
this case, the corresponding segment must be blocked from the beginning of the planning
horizon H until the train leaves it. Note that the return value of the function occurs(sB

b)

CP 2025

33:8 Constraint-Based In-Station Train Dispatching

W+

W-

E-

E+

Figure 3 The diagram shows 13 columns of “parallel” track segments separated by red vertical
lines of the railway station shown in Figure 1.

is 1 if the variable sB
b is present, and absent otherwise. Additionally, we note that the

result of the multiplication operator ⊙ is only present if both multipliers are present.
Thus, s̃B

b is only present if sB
b is present.

The second case (Constraint 3) models destination trains having their stop, for which we
artificially extend their task’s duration by the end of the planning horizon H, so that the
platform is blocked for the remaining planning horizon.
The last case (Constraint 4) covers all other cases.

Constraint (5) imposes a partial order on trains, in which order they can enter the station
from the same entry point (e.g., W+ and E+ in Figure 1), where O is the set of all train
pairs (t1, t2), for which an order must be imposed. For example, if two trains t1 and t2 are
entering the station at the same entry point, then t1 must enter before t2 if sT

t1
≤ sT

t2
.

Constraints (6–7) ensure that if a route r is chosen (i.e., rT
r = r) then the start time

of the first block of the route sB
b equals to the train’s start time and sB

b is only present in
this case. Constraints (8–9) model their duration, which is the reservation time if there is
no stop or the reservation time plus the train’s dwell time otherwise. Constraints (10–11)
connect the start time variables of blocks in the same route where b − 1 is the immediate
predecessor of b and the addition operator ⊕ only returns the sum if both summands are
presents; otherwise, the result is absent.

Constraint (12) refines the lower bound on the trains’ dwell time in the case the route
has a stop, while (13) assigns it to zero in the case that there is no stop. Constraint (14)
imposes an upper bound on the train’s dwell time if the train is vanishing, whereas the dwell
time is set to zero for origin trains (15). Constraints (16–20) provide general lower and upper
bounds on the decision and block’s variables.

3.3 Redundant Constraints
Redundant constraints are additions to a model that do not change the solution space, but
which might provide additional propagation for a CP solver. A potential weakness of our
model are the non-overlapping constraints (1), for which the start time variables are optional
when the train has multiple routes through the station. To introduce redundant constraints
we observe that railway stations have a “regular” pattern (e.g., tracks are parallel, “parallel”
track segments have similar length and similar position in their itinerary). We model these
“parallel” track segments using the global constraint cumulative [1]. For instance, Figure 3
shows a possible separation of track segments by vertical lines. These vertical lines split the
station in 13 columns, for which one can impose a redundant constraint for each. We note
that a segment can be part of multiple columns.

Let C be the set of columns, EC
c ⊆ E a set of segments in the column c and T C

c ⊆ T the
set of trains that have at least one route through the column. Then, we model the redundant
constraints as follows for a column c ∈ C with |T C

c | > |EC
c |.

A. Schutt, M. Cardellini, J. J. Dekker, D. Harabor, M. Maratea, and M. Vallati 33:9

alternative(sc
t , dc

t , S, D)
∀t ∈ T C

c : S = {sB
b | b ∈ B : eB

b ∈ EC
c ∧ tB

b = t},

D = {dB
b | b ∈ B : eB

b ∈ EC
c ∧ tB

b = t}
(21)

min D ≤ dc
t

∀t ∈ T C
c : D = {dB

b + (pB
b = ⊤ ? wT

t : 0)
| b ∈ B : eB

b ∈ EC
c ∧ tB

b = t}
(22)

cumulative(S, D, U, |EC
c |)

S = {s̃c
t | t ∈ T C

c }, D = {d̃c
t | t ∈ T C

c },

U = {1 | t ∈ T C
c }

(23)

s̃c
t = occurs(sc

t) ⊙ H

d̃c
t = dc

t + (sc
t − H)

∀t ∈ T C
c : (∃b ∈ B : tB

b = t ∧ pB
b = ⊤) ∧ yT

t = ori (24)

s̃c
t = sc

t d̃c
t = dc

t + H ∀t ∈ T C
c : (∃b ∈ B : tB

b = t ∧ pB
b = ⊤) ∧ yT

t = des (25)

s̃c
t = sc

t d̃c
t = dc

t

∀t ∈ T C
c : (∀b ∈ B : tB

b ̸= t ∨ pB
b = ⊥)

∨ yT
t ∈ {std, van}

(26)

Constraint (21) creates one mandatory “master” task with the start time variable sc
t and

duration variable dc
t for each train t ∈ T C

c passing through the column c by linking both
variables to their corresponding blocks’ optional start time variables and duration variables
from the different routes of the train t. The global constraint alternative is used, which
ensures that at most one of the blocks’ optional start time variable is present in a solution
and, if so, then sc

t = sB
b′ and dc

t = dB
b′ where b′ is the “present” block (i.e., the block belonging

to the chosen route); otherwise, sc
t is absent. In our case, sc

t is present, which forces that
exactly one of the blocks’ start time variable is present. Constraint (22) imposes a minimum
duration on the “master” task duration, but it might be redundant to (21) if the solver
natively supports the global constraint alternative. Constraint (23) ensures that at most |EC

c |
trains use one of the segments in EC

c at any time by setting a task with a start variable s̃c
t ,

duration variable d̃c
t , and a resource requirement of 1 for each train t. These variables

are then connected to their “master” task’s variables sc
t and dc

t in the constraints (24–26)
depending whether the train can have a stop in the column and its train type similar to the
constraints (2–4) on page 7.

So far, we characterise a column c via its set of “parallel” segments EC
c , but we did not

specify how we determine this set because it may not contain all “parallel” segments. There
are cases in which “parallel” segments belong to different columns because there is no overlap
in trains using these “parallel” segments. We determine the set of columns by computing
the connected components in an undirected graph for each set of “parallel” segments, where
a node represents one “parallel” segment and two nodes are connected if there exists a
train having two routes using the corresponding “parallel” segments. Such a partitioning of
“parallel” segments leads to stronger redundant constraints.

3.4 Solution Objectives

While the planning method in [6] is tailored to only provide a good first solution and cannot
be easily adapted to an optimisation method, for limits of both modelling and solving phases,
our model is flexible in this sense, and we can explore different objectives while using the
same constraint-based model. We explore three distinct objectives.

CP 2025

33:10 Constraint-Based In-Station Train Dispatching

Listing 1 The standard search strategy.
ann: std = seq_search ([

int_search (start , smallest , indomain_min),
int_search (route , smallest , indomain_min),
int_search (dwell , smallest , indomain_min)]);

Listing 2 The fixed-order search strategy where the array est contains the trains’ t

earliest start times sT
t .

array [int] of int: order = arg_sort (est);
ann: fixed = int_search (

[[start[order[i]], route[order[i]], dwell[order[i]]][j]
| i in index_set (order), j 1..3] ,
input_order , indomain_min);

Listing 3 The priority search strategy.
ann: prio = priority_search (start ,

[int_search ([start[t], route[t], dwell[t]],
input_order , indomain_min)

| t in T], smallest , indomain_min);

satis first solution subjected to (1–20) and the redundant constraints (21–26) for columns
under consideration

makespan min maxt∈T (sT
t + dR

rT
t

+ wT
t) subjected to (1–20) and the redundant constraints

(21–26) for columns under consideration
endtimes min

∑
t∈T (sT

t + dR
rT

t
+ wT

t) subjected to (1–20) and the redundant constraints
(21–26) for columns under consideration

While the objective satis is the same as the planning method, makespan optimises the
trains at the end of the planning horizon so that all trains exit the station as earliest as
possible with less interference to the next planning horizon, and endtimes optimises the total
amount of end times, which relates to minimising the total amount of delay. We highlighted
that we only need to change one line of MiniZinc to change the solution objective. Thus, it
would be easy to explore more objectives, e.g., minimising delays and the lexicographical
optimisation of minimising the makespan and then the sum of end times.

3.5 Search Strategies
In CP, search strategies can have a significant impact on the solution quality and the solving
efficiency. We explore different search strategies only over all the decision variables. For
readability, we describe the strategies in the MiniZinc language as search annotations, in
which the MiniZinc arrays start, route, and dwell contain the start time (sT

t), the route
(rT

t), and the dwell time (wT
t) variables for all trains t, respectively.

standard The standard search (Listing 1) assigns all start time variables before assigning
the route and dwell time variables. The search incentivises the earliest start of all trains
while keeping the route and dwell time flexible by selecting the train with the earliest
possible start time in sT

t and assigning this time to the variable.
fixed-order The fixed-order search (Listing 2) groups the three decision variables of a train

together and assigns them first in the order of start time, route, and dwell time before
fixing the variables of the next train. The trains are sorted in non-descending order of

A. Schutt, M. Cardellini, J. J. Dekker, D. Harabor, M. Maratea, and M. Vallati 33:11

the trains’ earliest start time sT
t . Compared to the standard search, it fixes all variables

of train, meaning that all corresponding block start time variables become present, and a
solver can perform stronger propagation of the non-overlapping constraints earlier in the
search. However, the fixed order of the trains does not incentivise the earliest start of all
trains as the standard search.

priority The priority search (Listing 3) combines the standard and fixed-order search by
grouping the train’s decision variables as in the fixed-order search and selecting the train
with the earliest possible start time in sT

t . However, the priority search [11] is not part
of MiniZinc distribution and is only supported by Chuffed among the four considered
solvers.

free The “free” search is a solver-specific generic search, which differs between solvers. For
some solvers, it can be combined with a user-defined search at the solver’s discretion (e.g.,
Chuffed [9, 10] switches between both searches when restarting).

restart For learning solvers as, e.g., Chuffed, a search can be combined with a restart policy,
in which the solver restarts the search after a given number of failures are encountered in
the search. We explore a geometry restart policy with a factor 1.5 and a base 100, in
which the first restart is triggered after 100 failures and the n-th restart after 100 · 1.5n−1.

4 Experiments

We carried out numerous experiments to test different modelling and solver choices, and
compare the planning method in [6] on instances of up to 50 trains. We describe our setup
in terms of hardware, instance generation procedure and solver selection and configuration.

Hardware. Our model was implemented in MiniZinc 2.9.2 and all solvers were executed
using MiniZinc with default parameters unless otherwise stated. All experiments were
conducted on a computational cluster, where each method was given exclusive access to
a single core of an Intel Xeon Platinum 8260 CPU at 2.4GHz, 16 GB of RAM. Due to
confidentiality, the planning method was run on a single core of a MacBook Pro Mid-2015
machine having a 2.5GHz Intel Core i7 (4870HQ) with 16 GB of RAM. According to the
CPU Benchmark at www.cpubenchmark.net the MacBook Pro processor achieves a 10%
lower mark for single thread computations compared to our cluster’s processors. Thus, we
conservatively assume the cluster processor is twice as fast as the other one for runtime
comparison. We imposed a runtime limit of 300 seconds. The full list of our experimental
results are available in Section A.

Instance Data. We took the railway station as depicted in Figure 1, which represents a
typical medium-size Italian railway station. For this station, we created 141 realistic instances
derived from real-world instances, ranging from one train up to 50 trains. These instances are
available at https://github.com/ShortestPathLab/train_dispatching_benchmark. For
each train, we uniformly chose the train type, the entry/exit points, the platform at which
an origin starts, the arrival time of the train, selected from the integer interval [0, 200 · |T |]
where a time unit represents one second, and whether or not the train has a stop at the
platform taking passengers. The number of origin, destination, and vanishing trains are
capped at 5 each. Their sizes are distributed as follows:
1–19 trains: (114 instances) We generate six instances for each number of trains. The

maximal optimal makespan for these instances is about 70 minutes.

CP 2025

www.cpubenchmark.net
https://github.com/ShortestPathLab/train_dispatching_benchmark

33:12 Constraint-Based In-Station Train Dispatching

20–50 trains: (27 instances) We generate three instances for each number of trains with a
step size of 5 (i.e., 20, 25, 30, etc.) and a further three instances with 21 and 22 trains.
The maximal optimal makespan for these instances is about 170 minutes (almost 3 hours).

In addition, we collect 9 instances of between 1 and 5 trains, available from https://github.
com/matteocarde/icaps2021. These instances were created by the authors of [6] for the
same station (they do not appear in the paper). The maximal optimal makespan for these
instances is about 7 minutes.

Solvers. Since our model is written in MiniZinc, we only chose solvers with a MiniZinc
interface. We selected Google’s OR-Tools solver CP-SAT version 9.12.4544 [23], the best
performing CP solvers in recent MiniZinc challenges [28], Chuffed version 0.13.2 [9, 10], a
CP solvers known for performing well on scheduling problems (see e.g. [16, 27, 29]), IBM
ILOG CP Optimizer version 12.0.1 [18], a commercial CP solver also known for performing
very well on scheduling problems, especially when optional tasks are involved, and its usage
in the related work [22, 17], and Gurobi version 12.0.1 as the best performing MIP solver
in recent MiniZinc challenges. We note that modelling in the solver’s interface and having
the full control over it may lead to a better performance, but at the cost of implementing
equivalent models in different solver interfaces, and maintaining each of them accordingly,
which is onerous, and requires a certain expertise level in each of these solvers. Moreover,
for MIP solvers, MiniZinc uses advanced linearisation techniques producing models, which
are often on-par with a tailored approach [2], and, for CP solvers, MiniZinc’s high-level
modelling language is close to the native ones in general. Thus, we do not expect a significant
performance difference for Chuffed, CP-SAT and Gurobi. For CP Optimizer, this may not
be the case, because this solver has a limited MiniZinc interface which does not support e.g.,
its global constraint alternative.

4.1 Search Strategies and Redundant Constraints
Tables 1 and 2 show the results of different combinations of solvers and search strategies, and
different options for using redundant constraints. Table 1 lists the results for the objective
makespan while Table 2 for endtimes. If a search strategy has the postfix “+” then it
was combined with the restart policy restart. For each combination (a row in the table),
we highlight the best performing option for the redundant constraints in italic, where an
option is better than another one if it finds solutions for more instances (i.e., the sum of
optimal and suboptimal solutions) or its average runtime is faster in the case of a tie. If this
combination is also the best performing across all search strategies for a solver, then it is
shown in bold. We test these five options for redundant constraints: (none) no redundant
constraints, (border) only redundant constraints on columns bordering the external railway
network, (platform) only redundant constraints on columns with track segments at platforms,
(b+p) options (border) and (platform), and (all) redundant constraints on all columns.

Search Strategies. CP-SAT’s free search is faster on average and optimally solved more
instances than the standard and fixed-order search, independent of the redundant constraint
option and solution objective. We note that CP-SAT pre-terminated with an error in
the instance parsing stage for five instances, while it could find a solution for all other
145 instances. For Chuffed, there are more search options and a different performance
outcome compared to CP-SAT. Only the fixed-order search with/without restart and priority
search with restart can find a solution for every instance in the given time limit, and their
performance is similar for the different redundant constraint options and solution objectives.

https://github.com/matteocarde/icaps2021
https://github.com/matteocarde/icaps2021

A. Schutt, M. Cardellini, J. J. Dekker, D. Harabor, M. Maratea, and M. Vallati 33:13

Table 1 Comparison of the of redundant constraints when minimising the makespan. For each
method, we present the number of proven optimal instances (opt), the number of instances for which
a solution is found (sat), and the average runtime of all instances in seconds (time).

none border platform b + p all

Solver Search opt sat time opt sat time opt sat time opt sat time opt sat time

Planner 137 28
Chuffed standard 110 116 84 111 116 82 109 115 86 110 115 85 110 115 86

standard+ 110 117 84 111 116 82 109 115 86 110 115 85 110 115 86
fixed-order 136 150 37 140 150 30 135 150 39 138 150 31 138 150 32
fixed-order+ 135 150 38 139 150 31 134 150 39 138 150 31 138 150 32
priority 126 139 55 132 140 46 126 139 55 131 140 46 130 139 47
priority+ 133 150 44 138 150 34 133 150 46 137 150 35 137 150 36
free 137 142 44 132 137 51 135 140 47 132 137 54 126 136 62

CP Opt. free 139 150 32 131 142 47 42 42 218 42 42 218 40 40 228
CP-SAT standard 132 141 44 129 133 49 129 134 53 128 132 52 128 132 55

fixed-order 134 145 39 138 145 33 134 145 40 138 145 34 137 145 35
free 142 145 26 142 145 25 141 145 31 142 145 26 142 145 28

Gurobi free 136 140 36 138 140 32 132 136 46 135 137 44 129 131 65

To our surprise, priority search without restart did not find a solution for all the instances,
which indicates that Chuffed’s propagation might not be strong enough to propagate the
decisions on one train to other trains. Chuffed’s free search optimally solved about 20
instances more than any of its other searches when minimising the sum of end times, but
had problems finding a solution for some instances. Moreover, Chuffed has a wide variability
on the performance for the different search strategies for minimising the makespan, so that
Chuffed’s virtual best solver optimally proves 145 instances and only requires an average
runtime of 15 seconds while only using redundant constraints on border columns (full results
are available in Section A). It shows that no search strategy dominates the other ones in this
case. We note that this virtual best solver significantly outperforms any other solver.

Redundant Constraints. It is not the best choice for any solver to have them on all
columns or only on the platform columns. This indicates that redundant constraints are not
beneficial on all columns, which means that are not bottlenecks as, e.g., platform columns,
in dispatching trains. We note that each additional redundant constraint comes with a cost
for the solver, which needs to handle the additional variables and constraints during the
solving process. For example, the flattening time that MiniZinc needs to convert the model
with an instance increased by about 30% and 50% for CP solvers and Gurobi, respectively,
which normally correlates to an increase in the problem size. Interestingly, what option is the
best depends on solver and solution objectives, which, we suspect, is related to the different
propagation strength of the solvers’ global constraints and their implemented free search. For
CP Optimizer, we see drastic performance deterioration when more redundant constraints
are used, which points to that the additional variables created by the redundant constraints
negatively impact its search decisions. There is a clear picture across the remaining solvers
when minimising the makespan, that having the redundant constraints only for border
columns will lead to the best performance of a solver. There is no uniform picture when

CP 2025

33:14 Constraint-Based In-Station Train Dispatching

Table 2 Comparison of the of redundant constraints when minimising the sum of end times. For
each method, we present the number of proven optimal instances (opt), the number of instances for
which a solution is found (sat), and the average runtime of all instances in seconds (time).

none border platform b + p all

Solver Search opt sat time opt sat time opt sat time opt sat time opt sat time

Planner 137 28
Chuffed standard 97 117 110 101 117 106 98 115 109 101 115 106 99 115 107

standard+ 97 117 110 101 117 107 98 116 109 101 115 106 99 114 107
fixed-order 103 150 101 109 150 89 104 150 100 109 150 89 108 150 92
fixed-order+ 103 150 101 108 150 90 104 150 101 109 150 90 107 150 92
priority 102 139 101 108 140 92 103 139 99 108 140 90 107 139 91
priority+ 102 150 101 108 150 90 103 150 100 110 150 87 109 150 89
free 122 141 72 128 137 61 125 141 70 126 134 66 121 132 71

CP Opt. free 106 150 107 107 139 108 41 42 220 42 42 220 39 40 228
CP-SAT standard 112 141 82 116 133 74 111 133 86 114 132 78 114 132 82

fixed-order 111 145 87 117 145 72 109 145 91 116 145 76 115 145 79
free 126 145 56 126 145 55 125 145 59 126 145 57 126 145 59

Gurobi free 133 140 45 136 138 38 129 137 54 132 135 47 130 132 60

minimising the sum of end times, The best option is (b+p) for Chuffed, (border) for CP-SAT
and Gurobi, and (none) for CP Optimizer, which shows that the differences in the solvers’
architectures can differently impact their performance for different modelling choices.

Other Observations. The state-of-the-art planning approach in [6] was only able to find
solutions for 137 instances whereas Chuffed found solutions for all instances and closed 147
across all cofigurations. CP solutions are competitive to the planning approach in terms of
the makespan, sum of end times and computational runtime (see Appendix A for full details).
As expected, the problem of minimising the sum of end times is more difficult to solve, which
is reflected by the lower number of proven optimal solutions and higher average runtime for
any solver because minimising the makespan only minimises the end time of the last train in
the schedule.

4.2 Comparison to the State of the Art
The planner [6] applies a dedicated search heuristic method for finding a first solution with a
minimal flow-on impact beyond the station. First, we compare the planner to the best solver
combination on the quality of the first solution found regarding their makespan and their
sum of end times, and then to the best solution found within the runtime limit.

For the first comparison, the solvers used the solution objective satis, and these solver
combinations: Chuffed and CP-SAT with fixed-order search and no redundant constraints,
and CP Optimizer and Gurobi with free search and no redundant constraints. Figure 4
shows the cumulative differences between the best known objective value for the makespan
(Figure 4a) and the sum of end times (Figure 4b) and the solvers’ first solution. While the
planner does not find a solution for 13 instances, when it found a solution it was always so
good as the solutions of other solvers and better than the other solutions for some instances
in terms of the makespan and the sum of end times. Unsurprisingly, Chuffed and CP-SAT
using the fixed-order search, which incentivised scheduling trains as earliest as possible,

A. Schutt, M. Cardellini, J. J. Dekker, D. Harabor, M. Maratea, and M. Vallati 33:15

0 25 50 75 100 125 150
0

100

101

102

103

104

105
Solver
Planner
Chuffed
CP Optimizer
Gurobi
CP-SAT

(a) Comparing the makespan.
0 25 50 75 100 125 150

0
100

101

102

103

104

105

106 Solver
Planner
Chuffed
CP Optimizer
Gurobi
CP-SAT

(b) Comparing the sum of end times.

Figure 4 The cumulative difference (y-axis) between the first solution found by each method and
the best known solution for each solution objective. The x-axis shows the number of instances.

0
0

100

101

102

103

125 150

Solver
Planner
Chuffed
CP Optimizer
Gurobi
CP-SAT
Gurobi Warm Start

(a) Minimising the makespan.
0

0

100

101

102

103

104

105

100 125 150

Solver
Planner
Chuffed
CP Optimizer
Gurobi
CP-SAT
Gurobi Warm Start

(b) Minimising the sum of end times.

Figure 5 The cumulative difference (y-axis) after 5 minutes of optimisation by each method and
the best known solution for each solution objective. The x-axis shows the number of instances.

are competitive to the planner. While CP Optimizer and Gurobi first solution quality are
understandingly much worse. Overall, Chuffed performs the best in comparison to the other
solvers and planner, because it quickly finds a solution for each instance while incurring
sometimes a small cost in the solution quality compared to the planner. We note that when
only considering the instances for that CP-SAT does not terminate in an error, CP-SAT is
the best performing solver.

The considered planner, as all systems solving PDDL+ planning instances, works in
satisfying mode, i.e. it terminates after finding the first solution. It cannot be easily modified
to operate in the so-called anytime mode, where better solutions are found over time. In
our approach, we only have to change the solution objective to one of the two minimisation
objectives to find better solutions over time. We used the best solver combinations identified
in the previous section, which are highlighted in bold in Tables 1 and 2. In addition to
these combinations, we also use Gurobi’s option to warm start their search by passing in
the first solution found by Chuffed using the search strategy fixed-order and no redundant
constraints to overcome Gurobi’s difficulty to finding a solution for all instances. Figure 5
shows plots of the cumulative differences between the best known objective value for the
makespan (Figure 5a) and the sum of end times (Figure 5b) for the solvers’ best found

CP 2025

33:16 Constraint-Based In-Station Train Dispatching

solution within five minutes. It is clear that providing more solving time, all solvers find
much better solutions than the planner on the harder instances. This highlights that a
significant reduction of train delays can be made when the search continues after a first
solution is found. Warm starting Gurobi with Chuffed’s first solution has not only solved the
issue with finding a solution for all instances, but also significantly increased its performance
so that it is the best performing solver for both objectives. For minimising the makespan
(the sum of end times) it optimally solved 146 (137) instances and found a feasible solution
for the remaining 4 (13) instances while having an average runtime of 18 (36) seconds.

Discussion. The solutions obtained show that the solution found by the planning approach
are sub-optimal for harder instances indicating the potential in the reduction of the flow-on
impacts of delays beyond a station. The best solver for optimising both objective was a
combination of Chuffed and Gurobi: Chuffed finds the first solution, which is then injected
to Gurobi as a warm start. In terms of redundant constraints, they are an overhead when
the solver is only asked to find a solution. When optimisation is required, then imposing
redundant constraints on the track segments bordering to the railway network beyond the
station is the most beneficial in terms of proving optimality and runtime.

5 Conclusion

We present a constraint-based model for solving the in-station train dispatching problem and
explore different options for redundant constraints to strengthen the model, which has not
been explored in this context before. Written in the solver-independent modelling language
MiniZinc, our model allows us to evaluate multiple leading CP solvers including Google’s
OR-Tools, CP-SAT, Chuffed, IBM ILOG CP Optimizer as well as the MIP solver Gurobi. In
comparison to our approach previous works suffered one or more short-comings: (i) inflexible
or train specific models, which are difficult to modify constraints or the solution objective, (ii)
not a fine granularity for modelling the non-overlapping constraints for trains (for reducing
the problem complexity), and (iii) limited experimental studies on only one solver.

We evaluate our model on synthetic instances generated from real-world data of a railway
station in Italy, containing up to 50 trains over a planning horizon of up to almost three hours
on the larger instances. Experimental results show that our CP-based approach (Chuffed) can
produce first solutions in seconds (similar to SOTA), which is suitable for close-to-real-time
decision-making. If more time is available then warm-starting the search (Gurobi) with the
first solution (from Chuffed) improves solution cost, up to optimal in just a few minutes
for most instances. To our best knowledge, we conduct the largest comparison of solvers
for this problem, and optimally solved the largest number of trains yet reported in the
literature. Our benchmark dataset is available at https://github.com/ShortestPathLab/
train_dispatching_benchmark to further work in the area.

References

1 Abderrahmane Aggoun and Nicolas Beldiceanu. Extending CHIP in order to solve complex
scheduling and placement problems. Mathematical and computer modelling, 17(7):57–73, 1993.

2 Gleb Belov, Peter J. Stuckey, Guido Tack, and Mark Wallace. Improved linearization of
constraint programming models. In Michel Rueher, editor, Principles and Practice of Constraint
Programming, pages 49–65, Cham, 2016. Springer International Publishing. doi:10.1007/
978-3-319-44953-1_4.

https://github.com/ShortestPathLab/train_dispatching_benchmark
https://github.com/ShortestPathLab/train_dispatching_benchmark
https://doi.org/10.1007/978-3-319-44953-1_4
https://doi.org/10.1007/978-3-319-44953-1_4

A. Schutt, M. Cardellini, J. J. Dekker, D. Harabor, M. Maratea, and M. Vallati 33:17

3 Alain Billionnet. Using integer programming to solve the train-platforming problem. Trans-
portation Science, 37:213–222, 2003. doi:10.1287/TRSC.37.2.213.15250.

4 Joseph Bryan, Glen Elliot Weisbrod, and Carl Douglas Martland. Rail freight solutions to
roadway congestion: final report and guidebook, volume 586. Transportation Research Board,
2007.

5 Alberto Caprara, Laura Galli, Leo Kroon, Gábor Maróti, and Paolo Toth. Robust train
routing and online re-scheduling. In Proceedings of ATMOS workshop, pages 24–33, 2010.
doi:10.4230/OASICS.ATMOS.2010.24.

6 Matteo Cardellini, Marco Maratea, Mauro Vallati, Gianluca Boleto, and Luca Oneto. In-
station train dispatching: A PDDL+ planning approach. In Proceedings of the International
Conference on Automated Planning and Scheduling, pages 450–458, 2021. URL: https:
//ojs.aaai.org/index.php/ICAPS/article/view/15991.

7 Dorotea De Luca Cardillo and Nicola Mione. k l-list λ colouring of graphs. European Journal
of Operational Research, 106:160–164, 1998. doi:10.1016/S0377-2217(98)00299-9.

8 Partha Chakroborty and Durgesh Vikram. Optimum assignment of trains to platforms under
partial schedule compliance. Transportation Research Part B: Methodological, 42:169–184,
2008.

9 Geoffrey Chu. Improving Combinatorial Optimization. PhD thesis, Department of Computing
and Information Systems, University of Melbourne, 2011.

10 Geoffrey Chu, Peter J Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange, and Kathryn
Francis. Chuffed, a lazy clause generation solver, 2018. URL: https://github.com/chuffed/
chuffed.

11 Thibaut Feydy, Adrian Goldwaser, Andreas Schutt, Peter J Stuckey, and Kenneth D Young.
Priority search with MiniZinc. In ModRef 2017: The Sixteenth International Workshop on
Constraint Modelling and Reformulation, 2017.

12 Ian Fox et al. The network modelling, timetabling and fuel saving computer programs on the
market. Technical report, Australian Rail Track Corporation, 2017.

13 Maria Fox and Derek Long. Modelling mixed discrete-continuous domains for planning. J.
Artif. Intell. Res., 27:235–297, 2006. doi:10.1613/JAIR.2044.

14 Ulrich Geske. Railway scheduling with declarative constraint programming. In Masanobu
Umeda, Armin Wolf, Oskar Bartenstein, Ulrich Geske, Dietmar Seipel, and Osamu Takata, ed-
itors, Declarative Programming for Knowledge Management, pages 117–134, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

15 Daniel Harabor and Peter J Stuckey. Rail capacity modelling with constraint programming.
In Integration of AI and OR Techniques in Constraint Programming: 13th International
Conference, CPAIOR 2016, Banff, AB, Canada, May 29-June 1, 2016, Proceedings 13, pages
170–186. Springer, 2016. doi:10.1007/978-3-319-33954-2_13.

16 Stefan Kreter, Andreas Schutt, and Peter J Stuckey. Using constraint programming for solving
RCPSP/max-cal. Constraints, 22:432–462, 2017. doi:10.1007/S10601-016-9266-6.

17 Rajnish Kumar, Goutam Sen, Samarjit Kar, and Manoj Kumar Tiwari. Station dispatching
problem for a large terminal: A constraint programming approach. Interfaces, 48(6):510–528,
2018. doi:10.1287/inte.2018.0950.

18 Philippe Laborie, Jérôme Rogerie, Paul Shaw, and Petr Vilím. IBM ILOG CP optimizer for
scheduling: 20+ years of scheduling with constraints at IBM/ILOG. Constraints, 23:210–250,
2018. doi:10.1007/S10601-018-9281-X.

19 Leonardo Lamorgese and Carlo Mannino. An exact decomposition approach for the real-time
train dispatching problem. Operations Research, 63(1):48–64, 2015. doi:10.1287/OPRE.2014.
1327.

20 Leonardo Lamorgese, Carlo Mannino, and Mauro Piacentini. Optimal train dispatching by
benders’-like reformulation. Transportation Science, 50:910–925, 2016. doi:10.1287/TRSC.
2015.0605.

CP 2025

https://doi.org/10.1287/TRSC.37.2.213.15250
https://doi.org/10.4230/OASICS.ATMOS.2010.24
https://ojs.aaai.org/index.php/ICAPS/article/view/15991
https://ojs.aaai.org/index.php/ICAPS/article/view/15991
https://doi.org/10.1016/S0377-2217(98)00299-9
https://github.com/chuffed/chuffed
https://github.com/chuffed/chuffed
https://doi.org/10.1613/JAIR.2044
https://doi.org/10.1007/978-3-319-33954-2_13
https://doi.org/10.1007/S10601-016-9266-6
https://doi.org/10.1287/inte.2018.0950
https://doi.org/10.1007/S10601-018-9281-X
https://doi.org/10.1287/OPRE.2014.1327
https://doi.org/10.1287/OPRE.2014.1327
https://doi.org/10.1287/TRSC.2015.0605
https://doi.org/10.1287/TRSC.2015.0605

33:18 Constraint-Based In-Station Train Dispatching

21 Carlo Mannino and Alessandro Mascis. Optimal real-time traffic control in metro stations.
Operations Research, 57:1026–1039, 2009. doi:10.1287/OPRE.1080.0642.

22 Mahmoud Masoud, Erhan Kozan, Geoff Kent, and Shi Qiang Liu. A new constraint pro-
gramming approach for optimising a coal rail system. Optimization Letters, 11:725–738, 2017.
doi:10.1007/s11590-016-1041-5.

23 Laurent Perron. Operations research and constraint programming at Google. In International
conference on principles and practice of constraint programming, pages 2–2. Springer, 2011.

24 Joaquín Rodriguez. A constraint programming model for real-time train scheduling at junctions.
Transportation Research Part B: Methodological, 41:231–245, 2007.

25 Enrico Scala, Patrik Haslum, Sylvie Thiébaux, and Miquel Ramírez. Interval-based relaxation
for general numeric planning. In Proceedings of ECAI, pages 655–663, 2016. doi:10.3233/
978-1-61499-672-9-655.

26 Enrico Scala, Patrik Haslum, Sylvie Thiébaux, and Miquel Ramírez. Subgoaling techniques
for satisficing and optimal numeric planning. J. Artif. Intell. Res., 68:691–752, 2020. doi:
10.1613/JAIR.1.11875.

27 Andreas Schutt, Thibaut Feydy, Peter J Stuckey, and Mark G Wallace. Solving RCPSP/max
by lazy clause generation. Journal of scheduling, 16:273–289, 2013. doi:10.1007/
S10951-012-0285-X.

28 Peter J Stuckey, Thibaut Feydy, Andreas Schutt, Guido Tack, and Julien Fischer. The MiniZinc
challenge 2008–2013. AI Magazine, 35(2):55–60, 2014. doi:10.1609/AIMAG.V35I2.2539.

29 Ria Szeredi and Andreas Schutt. Modelling and solving multi-mode resource-constrained
project scheduling. In Principles and Practice of Constraint Programming: 22nd International
Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceedings 22, pages 483–492.
Springer, 2016. doi:10.1007/978-3-319-44953-1_31.

30 Ruifan Tang, Lorenzo De Donato, Nikola Bešinović, Francesco Flammini, Rob M.P. Goverde,
Zhiyuan Lin, Ronghui Liu, Tianli Tang, Valeria Vittorini, and Ziyulong Wang. A literature
review of artificial intelligence applications in railway systems. Transportation Research Part
C: Emerging Technologies, 140:103679, 2022.

https://doi.org/10.1287/OPRE.1080.0642
https://doi.org/10.1007/s11590-016-1041-5
https://doi.org/10.3233/978-1-61499-672-9-655
https://doi.org/10.3233/978-1-61499-672-9-655
https://doi.org/10.1613/JAIR.1.11875
https://doi.org/10.1613/JAIR.1.11875
https://doi.org/10.1007/S10951-012-0285-X
https://doi.org/10.1007/S10951-012-0285-X
https://doi.org/10.1609/AIMAG.V35I2.2539
https://doi.org/10.1007/978-3-319-44953-1_31

A. Schutt, M. Cardellini, J. J. Dekker, D. Harabor, M. Maratea, and M. Vallati 33:19

A Full Results

The following three tables show the full list of our experimental results. Table 3 lists all
results for the objective satis, i.e., finding a solution. Table 4 lists the results for the objective
makespan, whereas Table 5 the results for endtimes.

Table 3 Comparison of all solving methods when instructed to find the first solution. For each
method, the number of instances for which a solution is found (sat), the average runtime of all
instances in seconds (time), the average makespan, and the average sum of end times.

sat time makespan end sum
solver search column

Planner none 137 28 2219 26844
Chuffed fixed-order none 150 5 2699 37449

border 150 6 2699 37449
platform 150 6 2699 37449
b + p 150 6 2699 37449
all 150 7 2699 37449
virt. best 150 5 2699 37449

priority none 139 5 2291 24957
border 141 9 2405 28829
platform 139 6 2291 24957
b + p 140 7 2349 26797
all 139 6 2294 25023
virt. best 142 8 2416 28987

priority+ none 150 7 2700 37432
border 150 7 2700 37435
platform 150 8 2700 37434
b + p 150 7 2700 37433
all 150 7 2700 37433
virt. best 150 7 2700 37430

free none 143 8 2836 40346
border 137 11 2410 27614
platform 142 8 2763 37174
b + p 136 13 2307 24669
all 136 12 2315 24958
virt. best 143 15 2612 33174

virt. best none 150 8 2699 37418
border 150 7 2699 37421
platform 150 9 2699 37419
b + p 150 7 2699 37420
all 150 7 2699 37420
virt. best 150 7 2699 37418

CP Opt. free none 150 5 3370 54742
border 140 13 2743 32029
platform 42 6 637 1937
b + p 42 6 640 1980
all 40 30 648 2000

CP 2025

33:20 Constraint-Based In-Station Train Dispatching

CP-SAT fixed-order none 145 7 2770 38680
border 145 8 2770 38680
platform 145 8 2770 38680
b + p 145 9 2770 38680
all 145 10 2770 38680
virt. best 145 7 2770 38680

free none 145 7 2847 44652
border 145 8 2898 46322
platform 145 8 2899 46328
b + p 145 9 2898 46322
all 145 12 2990 42546
virt. best 145 10 2792 39730

virt. best none 145 7 2770 38679
border 145 8 2769 38679
platform 145 8 2769 38679
b + p 145 9 2769 38679
all 145 10 2770 38678
virt. best 145 8 2770 38676

Gurobi free none 143 13 3064 35304
border 142 12 2970 33647
platform 135 7 2702 25345
b + p 137 11 2792 26519
all 132 21 2566 23028

Table 4 Comparison of all solving methods when optimsing the makespan. For each method, the
number of proven optimal instances (opt), the number of instances for which a solution is found
(sat), the average runtime of all instances in seconds (time), and the average makespan for the solved
instances.

opt sat time makespan
solver search column

Planner none 0 137 28 2219
Chuffed standard none 110 116 84 1884

border 111 116 82 1884
platform 109 115 86 1874
b + p 110 115 85 1874
all 110 115 86 1874
virt. best 111 116 81 1884

standard+ none 110 117 84 1903
border 111 116 82 1884
platform 109 115 86 1874
b + p 110 115 85 1874
all 110 115 86 1874
virt. best 111 117 81 1903

fixed-order none 136 150 37 2696
border 140 150 30 2697
platform 135 150 39 2696

A. Schutt, M. Cardellini, J. J. Dekker, D. Harabor, M. Maratea, and M. Vallati 33:21

b + p 138 150 31 2697
all 138 150 32 2697
virt. best 142 150 27 2696

fixed-order+ none 135 150 38 2696
border 139 150 31 2697
platform 134 150 39 2696
b + p 138 150 31 2697
all 138 150 32 2697
virt. best 141 150 28 2696

priority none 126 139 55 2288
border 132 140 46 2345
platform 126 139 55 2288
b + p 131 140 46 2345
all 130 139 47 2290
virt. best 132 141 45 2358

priority+ none 133 150 44 2697
border 138 150 34 2697
platform 133 150 46 2697
b + p 137 150 35 2697
all 137 150 36 2697
virt. best 138 150 34 2697

free none 137 142 44 2384
border 132 137 51 2250
platform 135 140 47 2325
b + p 132 137 54 2247
all 126 136 62 2256
virt. best 139 142 39 2381

virt. best none 145 150 19 2696
border 147 150 15 2696
platform 145 150 20 2696
b + p 147 150 17 2696
all 146 150 18 2696
virt. best 148 150 12 2696

CP Opt. free none 139 150 32 2704
border 131 142 47 2342
platform 42 42 218 572
b + p 42 42 218 572
all 40 40 228 591

CP-SAT standard none 132 141 44 2567
border 129 133 49 2279
platform 129 134 53 2307
b + p 128 132 52 2264
all 128 132 55 2264
virt. best 132 141 44 2567

fixed-order none 134 145 39 2767
border 138 145 33 2767
platform 134 145 40 2767
b + p 138 145 34 2767

CP 2025

33:22 Constraint-Based In-Station Train Dispatching

all 137 145 35 2767
virt. best 138 145 32 2767

free none 142 145 26 2767
border 142 145 25 2782
platform 141 145 31 2780
b + p 142 145 26 2784
all 142 145 28 2781
virt. best 143 145 22 2767

virt. best none 142 145 25 2767
border 143 145 22 2767
platform 142 145 28 2767
b + p 143 145 23 2767
all 143 145 24 2767
virt. best 143 145 21 2767

Gurobi free none 136 140 36 2259
border 138 140 32 2253
platform 132 136 46 2132
b + p 135 137 44 2163
all 129 131 65 2012

warm start none 144 150 23 2696
border 146 150 18 2696

Table 5 Comparison of all solving methods when optimising the sum of end times. For each
method, the number of proven optimal instances (opt), the number of instances for which a solution
is found (sat), the average runtime of all instances in seconds (time), and the average sum of end
times for the solved instances.

opt sat time end sum
solver search column

Planner none 0 137 28 26844
Chuffed standard none 97 117 110 16906

border 101 117 106 16906
platform 98 115 109 16419
b + p 101 115 106 16419
all 99 115 107 16419
virt. best 103 117 103 16906

standard+ none 97 117 110 16906
border 101 117 107 16906
platform 98 116 109 16726
b + p 101 115 106 16419
all 99 114 107 16404
virt. best 103 117 104 16906

fixed-order none 103 150 101 37421
border 109 150 89 37417
platform 104 150 100 37421
b + p 109 150 89 37417
all 108 150 92 37417

A. Schutt, M. Cardellini, J. J. Dekker, D. Harabor, M. Maratea, and M. Vallati 33:23

virt. best 113 150 82 37416
fixed-order+ none 103 150 101 37421

border 108 150 90 37417
platform 104 150 101 37421
b + p 109 150 90 37417
all 107 150 92 37417
virt. best 113 150 83 37416

priority none 102 139 101 24936
border 108 140 92 26759
platform 103 139 99 24936
b + p 108 140 90 26759
all 107 139 91 24985
virt. best 110 141 86 26934

priority+ none 102 150 101 37402
border 108 150 90 37393
platform 103 150 100 37402
b + p 110 150 87 37394
all 109 150 89 37396
virt. best 110 150 86 37391

free none 122 141 72 26609
border 128 137 61 24411
platform 125 141 70 26403
b + p 126 134 66 21366
all 121 132 71 20913
virt. best 130 141 56 25999

virt. best none 125 150 65 37386
border 128 150 58 37381
platform 127 150 64 37386
b + p 127 150 58 37382
all 124 150 62 37383
virt. best 130 150 53 37380

CP Opt. free none 106 150 107 39396
border 107 139 108 24375
platform 41 42 220 1582
b + p 42 42 220 1582
all 39 40 228 1707

CP-SAT standard none 112 141 82 31811
border 116 133 74 23440
platform 111 133 86 23439
b + p 114 132 78 23192
all 114 132 82 23192
virt. best 116 141 73 31811

fixed-order none 111 145 87 38652
border 117 145 72 38645
platform 109 145 91 38652
b + p 116 145 76 38645
all 115 145 79 38646
virt. best 117 145 72 38645

CP 2025

33:24 Constraint-Based In-Station Train Dispatching

free none 126 145 56 38584
border 126 145 55 38586
platform 125 145 59 38794
b + p 126 145 57 38678
all 126 145 59 38590
virt. best 127 145 53 38579

virt. best none 126 145 56 38584
border 126 145 55 38586
platform 125 145 59 38591
b + p 126 145 57 38590
all 126 145 59 38590
virt. best 127 145 53 38579

Gurobi free none 133 140 45 23632
border 136 138 38 21880
platform 129 137 54 21109
b + p 132 135 47 20053
all 130 132 60 18786

warm start none 134 150 43 37379
border 137 150 36 37377

	1 Introduction
	2 Related Work
	3 Problem Description and Model
	3.1 Problem Description
	3.2 Constraint-based Model
	3.3 Redundant Constraints
	3.4 Solution Objectives
	3.5 Search Strategies

	4 Experiments
	4.1 Search Strategies and Redundant Constraints
	4.2 Comparison to the State of the Art

	5 Conclusion
	A Full Results

