
Pushing the Envelope in Numeric Pattern Planning

Matteo Cardellini , Enrico Giunchiglia
DIBRIS, University of Genova, Genova, Italy
{matteo.cardellini, enrico.giunchiglia}@unige.it

Abstract

In this paper, we present a symbolic search-based procedure
for numeric planning based on Symbolic Pattern Planning
(SPP). In SPP, a pattern is a sequence of actions used to de-
fine a logic formula whose models correspond to sequences
of applicable actions and reachable states. Here, starting from
the empty pattern, we iteratively extend and compress it using
search techniques until a goal state is reached. We prove the
correctness and completeness of the procedure and demon-
strate its good performance compared to both the original SPP
approach and other publicly available numeric planners on
the 2023 International Planning Competition Agile track.

1 Introduction
In deterministic AI planning, the objective is to find a se-
quence of actions leading from an initial state I to a state
satisfying a goal condition G. Two main alternative ap-
proaches exist to solve a planning problem. Planning as
Search (Bonet and Geffner 2001), instead of exploring all
possible sequences of actions, selects a sequence and ex-
tends it with the action likely to lead to a goal state. Planning
as Satisfiability (Kautz and Selman 1992) instead

1. fixes a bound n initially set to 0,

2. computes a logic encoding of a set S of all the sequences
of actions executable from a state and of length at most n,

3. checks whether S contains a valid plan by imposing I as
the starting state of each sequence, and G as a condition
on the state resulting from executing each sequence, and

4. increases n upon failure of the check at the previous step.

Symbolic Pattern Planning (SPP) (Cardellini, Giunchiglia,
and Maratea 2024a) is a recent logic encoding, which, given
an arbitrary finite sequence of actions≺ called pattern, mod-
els the sequences of actions which are executable from a
state and are also a subsequence of ≺. Planning as Sat-
isfiability with SPP is very effective in solving numeric
(Cardellini, Giunchiglia, and Maratea 2024b) and temporal
(Cardellini and Giunchiglia 2025) planning problems.

In this paper, we push the envelope of planning with pat-
terns, and show how to symbolically search for a valid plan
by iteratively extending (adding actions to) and compress-
ing (removing actions from) an initially computed pattern.
Specifically, the idea is to concatenate

1. an initial pattern that allows reaching a state s satisfying
a subset of the goals, and

2. another pattern computed from s, which is extended until
a state satisfying new additional goals can be reached.

At the beginning, the first pattern is computed from the ini-
tial state, and the two steps are iterated until all the goals
have been satisfied, at which point a valid plan is returned.

On the theoretical side, we prove the correctness (any
returned plan is valid) and completeness (if there exists a
valid plan, one will be returned) of the proposed procedure.
On the experimental side, the analysis shows that the pro-
posed procedure has good performance compared to both
the previous SPP approach and all the other publicly avail-
able (both symbolic and search-based) planners with the set-
tings, domains and problems of the 2023 International Plan-
ning Competition (IPC), Agile track. Overall, our procedure
solves 325 problems out of the 420 considered, compared
to the 284 solved by the previous state of the art. Abla-
tion studies reveal that compressing the initial pattern – i.e.,
removing actions that are not necessary to reach the state
where the pattern is recomputed – has the most significant
impact on the performance of our procedure.

These are the main contributions of the paper:
1. We present a SPP search-based symbolic procedure for

numeric planning, the first exploiting Planning as Search
techniques in a Planning as Satisfiability setting.

2. We prove its correctness and completeness.
3. We show that it outperforms the publicly available plan-

ners on the benchmarks of the 2023 IPC Agile track.
4. We conduct ablation studies to highlight which technique

is most effective.
This work builds significantly on the work of (Cardellini,

Giunchiglia, and Maratea 2024a), which itself builds on
top of (i) the R2∃-encoding for classical planning of (Ba-
lyo 2013) adapted for numeric planning in (Bofill, Espasa,
and Villaret 2016) and (ii) the rolling encoding presented
in (Scala et al. 2016b). In search-based planning, several
planners exploit actions sequences, first searching for a goal
state employing the full sequence, and then resorting back to
single actions if unsuccessful. The classical planner YAHSP
(Vidal 2004), employs “look-ahead plans” (i.e., sequences)
in the forward search trying to jump to intermediate states



closer to the goal. This is similar to the concept of macro-
actions (Alarnaouti, Percassi, and Vallati 2024). Patterns,
however, allow capturing a larger superset of sequences than
macro-actions and “look-ahead plans”, since actions in any
position of the pattern may not be selected in the plan,
while the latter approaches only employ the full sequence.
Moreover, in numeric planning, the planner needs also to
consider how many times a single action in the sequence
has to be consecutively applied (i.e. rolled) which is stan-
dard in the SPP approach. Conclusively, all the abovemen-
tioned approaches are implemented only for search-based
approaches, while our work moves forward the state-of-the-
art for satisfiability-based planning.

After the background on numeric Planning as Satisfiabil-
ity with SPP (Section 2), a simple example illustrates the
drawbacks of the original SPP approach (Section 3), fol-
lowed by the novel procedure presented in this paper (Sec-
tion 4), its behaviour on the motivating example (Section 5),
and the experimental analysis and the ablation study (Sec-
tion 6). We end the paper with the conclusions and prospec-
tive for future work.

2 Numeric Planning with SPP
In this section, we first introduce the syntax and semantics of
PDDL2.1 level 2 (Fox and Long 2003), the de-facto standard
in numeric planning. Then, we show how PDDL2.1 prob-
lems have been encoded in Satisfiability Modulo Theories
(SMT) (Barrett, Fontaine, and Tinelli 2016) exploiting the
Planning as Satisfiability approach and the SPP encoding.

2.1 Numeric Planning
In PDDL2.1, a numeric planning problem Π is a tuple Π =
⟨VB , VN , A, I,G⟩ where VB and VN are sets of proposi-
tional and numeric variables with domain in {⊤,⊥} and Q,
respectively, where ⊤ and ⊥ are the symbols for truth and
falsity. A propositional condition is an expression of the
form v = ⊤ or v = ⊥, with v ∈ VB . A numeric condition is
an expression of the form ψ⊵ 0, with ⊵ ∈ {<,≤,=,≥, >}
and ψ a linear combination of the variables in VN , i.e.,∑

x∈VN
kxx + k, with kx, k ∈ Q. A state is a function

assigning each variable in VB ∪ VN to an element in its do-
main, and is naturally extended to conditions and formulas,
the latter defined as propositional combination of conditions.
In Π, I is the initial state and G is a set of goal formulas
whose models are the goal states. An action a ∈ A is a pair
⟨pre(a), eff(a)⟩ where pre(a) is the set of preconditions of
a, i.e., a set of propositional and numeric conditions, and
eff(a) is the set of effects of a, i.e., expressions of the form
v := ⊤ or w := ⊥ or x := ψ with v, w ∈ VB , x ∈ VN
and ψ a linear expression. For each action a, the variables
occurring in eff(a) to the left of the “:=” symbol are said
to be assigned by a. A numeric effect x := ψ is said to be
a linear increment if ψ = x + ψ′ with ψ′ a linear expres-
sion not containing x. As standard, we write (ψ ⊵ ψ′) for
(ψ−ψ′ ⊵ 0) and we abbreviate x := x+ψ and x := x−ψ
with x += ψ and x −= ψ respectively, v = ⊤ and v = ⊥
with v and ¬v respectively. From here on, v, w, x represent
variables and ψ a numeric expression, each symbol possibly
decorated with subscripts or superscripts.

An action a is executable in a state s if for each v = ⊤,
w = ⊥ and ψ ⊵ 0 in pre(a) we have s(v) = ⊤, s(w) = ⊥
and s(ψ) ⊵ 0. The result of executing an action a in a state
s is the state s′ such that, for each v ∈ VB ∪ VN , s′(v) = ⊤
if v := ⊤ ∈ eff(a), s′(v) = ⊥ if v := ⊥ ∈ eff(a), s′(v) =
s(ψ) if v := ψ ∈ eff(a), and s′(v) = s(v) otherwise.

Consider a plan π, defined as a finite sequence of ac-
tions a0; . . . ; an−1 of length n ≥ 0. The state sequence
s0; . . . ; sn induced by π in s0 is such that for i ∈ {0, . . . , n−
1}, si+1 is (i) undefined if either ai is not executable in si
or si is undefined, and (ii) the result of executing ai in si
otherwise.

We say that π is executable in a state s0 if each state in the
sequence induced by π in s0 is defined. If π is executable
in the initial state I and the last state induced by π in I is a
goal state, we say that π is a valid plan.

2.2 Planning as Satisfiability with SPP
Let Π = ⟨VB , VN , A, I,G⟩ be a numeric planning prob-
lem. In Planning as Satisfiability (Kautz and Selman 1992;
Kautz and Selman 1996), an encoding E of Π is a tu-
ple ⟨X ,A, I(X ), T (X ,A,X ′),G(X )⟩ where X is a finite
set of propositional and numeric state variables including
VB ∪VN ;A is a finite set of action variables, each one with
the set of values it can take; I(X ) is the initial state formula
in the set X of variables, defined as∧

v:I(v)=⊤

v ∧
∧

w:I(w)=⊥

¬w ∧
∧

x,k:I(x)=k

x = k;

while G(X ) is the goal formula in the set X of variables,
obtained by making the conjunction of the formulas in G.

The valid transitions between states correspond to the
models of T (X ,A,X ′), the symbolic transition relation, a
formula in the variables X ∪A ∪ X ′, where X ′ is the set of
next state variables consisting of a new variable v′ for each
variable v ∈ X . In SPP, the definition of the symbolic tran-
sition relation starts by fixing a pattern, defined as a finite
sequence a1; . . . ; ak of actions in A, with k ≥ 0. The empty
pattern, obtained for k = 0, is denoted with ϵ.

Consider a pattern ≺ = a1; . . . ; ak, k ≥ 0. The basic
idea of SPP is to define the value of each state variable in the
state resulting from the execution of each action in ≺ for 0
or more times, as a function of both the state in which the
execution is started and of the pattern≺. Notice that, by def-
inition, the pattern can contain multiple, even consecutive,
occurrences of the same action a. However, each repeated
occurrence is treated as a different copy of the action. With
such assumption, with ai we denote both the i-th action in
the pattern and the corresponding action variable in the en-
coding. Then, in the pattern ≺-encoding of Π,

1. the set of state variables X = VB ∪VN is the union of the
propositional and numeric variables of Π,

2. The set of action variables is defined as {a1, . . . , ak},
with one variable per action occurrence in the pattern ≺.
Each variable ai ranges over the non-negative integers
N≥0. Intuitively, the value of ai represents the number of
times that the action is executed consecutively, following
the sequential execution of each action in {a1, . . . , ai−1},



each also executed zero or more times. Thus, in SPP, de-
pending on the fixed pattern ≺, we have a different set of
action variables, denoted with A≺.

The value taken by v ∈ VB ∪ VN after the sequential
execution of each action occurrence ai in ≺ for a number
≥ 0 of consecutive times, is given by σi(v), inductively
defined as σ0(v) = v, and for each i ∈ [1, k]

1. σi(v) = σi−1(v) if v is not assigned by ai,

2. σi(v) = (σi−1(v) ∨ ai > 0) if v := ⊤ ∈ eff(ai),

3. σi(v) = (σi−1(v) ∧ ai = 0) if v := ⊥ ∈ eff(ai),

4. σi(v) = (σi−1(v) + ai × σi−1(ψ)) if v += ψ ∈ eff(ai)
is a linear increment, where σi−1(ψ) is the expression ob-
tained from ψ after each variable x ∈ VN has been re-
placed with σi−1(x),

5. σi(v) = ITE(ai > 0, σi−1(ψ), σi−1(v)) if v := ψ ∈
eff(ai) is not a linear increment.

The term ITE(c, t, e) for “If (c) Then t Else e” returns t or e
depending on whether the condition c is true or not, and is
part of the standard language supported by SMT solvers.

The symbolic transition relation of the ≺-encoding –
which defines the value of the variables in X ′ on the basis
of the values of the variables in X and in A≺– is denoted
with T ≺(X ,A≺,X ′), and is defined as the conjunction of
the formulas in the sets:

1. pre≺(A), which contains, for each action ai in ≺ and for
each v = ⊤ and w = ⊥ in pre(ai),

ai > 0→ v, ai > 0→ ¬w,
and for each ψ ⊵ 0 in pre(ai),

ai > 0→ σi−1(ψ)⊵ 0, ai > 1→ σi−1(ψ[ai])⊵ 0,

where ψ[ai] is the linear expression obtained from ψ by
substituting each variable x ∈ VN with

(a) x + (ai − 1) × ψ′, whenever x += ψ′ ∈ eff(ai) is a
linear increment,

(b) ψ′, if x := ψ′ ∈ eff(ai) is not a linear increment,
(c) x, if x is not assigned by ai.

The above formulas ensure that the numeric precondition
ψ⊵0 ∈ pre(ai) holds both in the first and in the last state
in which ai is executed, and thus that ψ ⊵ 0 holds also
in all the intermediate states in which ai is consecutively
executed, see (Scala et al. 2016b).

2. amo≺(A), which contains, for each action ai in ≺ which
is not eligible for rolling (Scala et al. 2016b)

ai = 0 ∨ ai = 1.

An action ai is eligible for rolling if

(a) v = ⊥ ∈ pre(ai) (resp. v = ⊤ ∈ pre(ai)) implies
v := ⊤ ̸∈ eff(ai) (resp. v := ⊥ ̸∈ eff(ai)), and

(b) all the numeric variables assigned by ai with a linear
increment do not occur elsewhere in eff(ai), and

(c) ai contains a linear increment.

3. frame≺(VB ∪ VN ), consisting of, for each variable v ∈
VB and x ∈ VN ,

v′ ↔ σk(v), x′ = σk(x).

Given T ≺(X ,A≺,X ′), following the Planning as Satisfi-
ability approach, an integer n ≥ 0 called bound or number
of steps is fixed, n+ 1 disjoint copies X0, . . . ,Xn of the set
X of state variables, and n disjoint copiesA≺

0 , . . . ,A≺
n−1 of

the setA≺ of action variables are made, and the≺-encoding
of Π with bound n is defined to be the formula

Π≺
n = I(X0) ∧

n−1∧
i=0

T ≺(Xi,A≺
i ,Xi+1) ∧ G(Xn), (1)

in which I(X0) is the formula in the variables X0 obtained
by substituting each variable x ∈ X with x0 ∈ X0 in I(X ),
and similarly for T ≺(Xi,A≺

i ,Xi+1) and G(Xn). Then, the
satisfiability of Π≺

n is checked calling an SMT solver starting
from n = 0 and then incrementing n until a model is found.

In (Cardellini, Giunchiglia, and Maratea 2024a) it was
shown that for any pattern ≺ and bound n, any model of
Π≺

n corresponds to a valid plan of Π (correctness), and that
if Π has a valid plan then for any complete pattern ≺ there
exists a bound n for which Π≺

n is satisfiable (completeness).
A pattern is complete (resp. simple) if it contains at least
(resp. at most) one occurrence of each action in A.

For selecting the pattern, Cardellini, Giunchiglia, and
Maratea exploited the Asymptotic Relaxed Planning Graph
(ARPG) construction from (Scala et al. 2016a). In an ARPG,
actions are divided in layers: at layer l = 0 there are the
actions which are executable in the initial state, and at the
higher layers there are the actions whose executability re-
quires the execution of some actions in the lower layers (see
(Scala et al. 2016a) for more details). This division in layers
defines a partial order on actions, which is then extended to a
total order, i.e., to a simple and complete pattern. In the fol-
lowing, to uniquely characterize the pattern produced with
the ARPG, actions in the same layer are lexicographically
ordered.

3 Motivating Example
In a relay race, there are N + 1 runners r0, r1, . . . , rN run-
ning on a linear track (an x axis) of length (N + 1) × L
with N > 0 and L ≥ 1, passing a baton to each other. The
position xi of runner ri ranges in [L× i, L× (i+ 1)], with
i ∈ [0, N ]. Each runner can run forward or backward, in-
creasing or decreasing its position by 1, only if it is holding
the baton. To exchange the baton, two runners ri and ri+1

must be in the same position. We assume that bi = 1 if ri
has the baton and bi = 0 otherwise,1 while btdi is a Boolean
variable denoting if ri has touched the baton. In all the prob-
lems in this domain, we assume that initially the runner r0
has the baton, that he is the only one who has touched the
baton and that each runner ri is in position L× i.

1We use bi ∈ {0, 1} instead of a Boolean variable to allow for
a concise modelling of the baton exchange action.



This scenario can be modelled as a planning problem Π =
⟨VB , VN , A, I,G⟩ having

VB = {btdi | i ∈ [0, N ]}, VN = {xi, bi | i ∈ [0, N ]},
A = {fw i, bw i | i ∈ [0, N ]} ∪ {xcj | j ∈ [1, N ]},
I = {xi = L× i | i ∈ [0, N ]}
∪ {b0 = 1, btd0 = ⊤}
∪ {bj = 0, btdj = ⊥ | j ∈ [1, N ]}.

Then, for each i ∈ [0, N ] and j ∈ [1, N ], we have the actions
fw i, bw i and xcj modelling respectively the running for-
ward and backward of ri, and the baton exchange between
rj−1 and rj , where

fw i : ⟨{xi < L× (i+ 1), bi > 0}, {xi += 1}⟩,
bw i : ⟨{xi > L× i, bi > 0}, {xi −= 1}⟩,
xcj : ⟨{xj = xj−1, bj + bj−1 > 0},

{bj := bj−1, bj−1 := bj , btdj := ⊤}⟩.
Assume the pattern ≺, using the ARPG construction from

the initial state, is

≺ = fw0; bw0; xc1; fw1; bw1; . . . ; xcN ; fwN ; bwN . (2)

Then, in the ≺-encoding of Π, pre≺(A) contains, for the
actions fw0, bw0 and xc1, formulas entailing

fw0 > 0→ (x0 < L) ∧ (b0 > 0),
fw0 > 1→ (x0 + (fw0 − 1) < L),

bw0 > 0→ (x0 + fw0 > 0) ∧ (b0 > 0),
bw0 > 1→ (x0 + fw0 − (bw0 − 1) > 0),

xc1 > 0→ (x0 + rt0 − lf 0 = x1) ∧ (b1 + b0 > 0),

and likewise for all other actions in ≺. For each j ∈ [1, N ],
the action xcj is not eligible for rolling, and thus

xcj = 0 ∨ xcj = 1,

belongs to amo≺(A). Finally, the frame axioms in
frame≺(VB ∪ VN ), for each i ∈ [0, N ] and j ∈ [1, N ] are:

x′i = xi + fw i − bw i, btd′0 = btd0, btd′j = btdj ∨ xcj ,
b′j = ITE(xcj > 0, ITE(xcj−1 > 0, ITE(. . . ), bj−1), bj).

As the frame axioms make clear, the ≺-encoding allows in
a single state transition

1. the multiple consecutive execution of the same action, as
in the rolled-up encoding (Scala et al. 2016b), and

2. the combination of multiple even contradictory effects on
a same variable by different actions, as in the R2∃ encod-
ing (Balyo 2013; Bofill, Espasa, and Villaret 2016).

Assuming the goal is that all the runners have to touch the
baton, i.e.,

G =

N⋃
i=0

{btdi = ⊤}, (3)

then the ≺-encoding of Π with n = 1, is satisfied by the
assignment setting all the action variables corresponding to
fw i and xcj to L and 1 respectively, and all the action vari-
ables corresponding to bw i to 0, i ∈ [0, N ], j ∈ [1, N ].

However, if the goal also includes returning the baton to the
initial runner r0, i.e., if

G = {b0 = 1} ∪
N⋃
i=0

{btdi = ⊤}, (4)

the ≺-encoding of Π requires a bound n = N + 1. This
is because returning the baton from rN to r0 necessitates
a plan where xcj is executed before xcj−1 for j ∈ [1, N ],
while their order in the pattern ≺ of Eq. 2 is the opposite.

4 Pushing the Envelope
Consider a numeric planning problem Π. The issue high-
lighted by the motivating example arises because a simple
and complete pattern≺ is computed only once starting from
the initial state, and then exploited at every step i ∈ [0, n−1]
in the ≺-encoding of Π with bound n (the formula Π≺

n ),
without considering that:
1. A non-empty subset P of the set G of goals may have

been already satisfied at a step i < n.
2. To satisfy the remaining goals in G \ P , it may be (far)

better to use a pattern entirely different from the one used
to satisfy the goals in P .

3. To facilitate the solution of the SMT formula, it may be
better to discard the actions in the steps < i that are use-
less for satisfying the goals in P .

Indeed, assuming π is a valid plan, the objective is to find the
smallest possible pattern ≺ covering π. Ideally, ≺ should
be the pattern of π. A pattern ≺ covers a plan π if ≺ is a
supersequence of the pattern of π. A sequence of actions ≺
is the pattern of a plan π if≺ is obtained from π by replacing
consecutive occurrences of each action a eligible for rolling
with a single instance of a. If a pattern≺ covers a valid plan,
the formula Π≺

1 , representing the pattern ≺-encoding of Π
with bound n = 1, is satisfiable.
Theorem 1. Let Π be a numeric planning problem. Let ≺
be a pattern covering a valid plan. Π≺

1 is satisfiable.

Proof. We first prove that considering π as a pattern, the
pattern π-encoding Ππ

1 of Π with bound n = 1 is satisfiable.
Then we prove that if ≺ is the pattern of π, then Π≺

1 is sat-
isfiable. Finally, we prove that for any supersequence ≺ of
the pattern of π, Π≺

1 is satisfiable.
First statement. Let π = a1; . . . ; ak. The assignment µ

extending the initial state, assigning 1 to all the action vari-
ables inAπ and assigning the next variables according to the
frame axioms in Ππ

1 , is a model of Ππ
1 , i.e., it also satisfies

preπ(A) and G(X ′). This follows from the fact that for each
variable v ∈ VB ∪ VN , if si, i ∈ [1, k], is the i-th state in-
duced by π, then si(v) = σi(v) once ai is substituted with
1 in σi(v), which can be proven by induction on i. If i = 0,
it is trivial. For i > 0, the thesis easily follows from the
induction hypothesis and the definitions of si and σi.

Second statement. Let ≺ be a pattern and ≺′ be a pattern
obtained replacing p consecutive occurrences ai; . . . ai+p in
≺ of the same action eligible for rolling, with just ai. Then,
if µ is a model of Π≺

1 then the assignment µ′ which dif-
fers from µ only in µ′(ai) =

∑i+1
j=i µ(aj) is a model of



Π≺′

1 . If σ and σ′ are associated to ≺ and ≺′ respectively,
we prove it by showing that for any variable v ∈ VB ∪ VN ,
σi+p(v) = σ′

i(v) once each ai, . . . , ai+p is substituted with
µ(ai), . . . , µ(ai+p) in σi+p(v), and ai is substituted with
µ′(ai) in σ′

i(v). Again, the proof is by induction on p: If
p = 0, it is trivial. For p > 0, the thesis easily follows
from the induction hypothesis and the definitions of si and
σi. The thesis then follows, since we can remove all the re-
peated occurrences of a same action in π obtaining the pat-
tern of π.

Third statement. Let ≺′ be the pattern of π and ≺ be a
supersequence of ≺′. Any model of Π≺′

1 can be extended to
a model of Π≺

1 by assigning all the action occurrences in ≺
and not in ≺′ to 0.

Naturally, the challenge of finding a pattern that covers a
valid plan is as complex as finding the plan itself. In practice,
employing an ARPG or, more in general, with any ordering
on the set A of actions, we just have a simple and complete
pattern computed from a given initial state. Such pattern
can be arbitrarily extended, but, for effectiveness, this needs
some care, since

1. different patterns, even when one is a permutation of the
other, cover different plans, and

2. each newly introduced action in the pattern adds another
variable to the encoding, increasing the solution space.

We now show how to symbolically search for a valid plan by
iteratively extending and compressing an initial pattern. The
final procedure, called PATTYDC, incorporates three ideas:

1. With patterns, in Eq. 1 it is not necessary to duplicate n-
times the symbolic transition relation: given the initially
computed pattern ≺h and a pattern ≺g , initially empty,
we can iterate the procedure of concatenating ≺h to ≺g

till ≺g covers a valid plan.
2. In the above outlined procedure, it is not necessary to keep

the same≺h at each iteration: given a pattern≺g allowing
us to reach a state s satisfying a strict subset P of the set
G of goals, we can (i) dynamically recompute the pattern
≺h whenever we reach a state s satisfying a strict super-
set of P , and then (ii) iterate the procedure, terminating
when all the goals in G are satisfied.

3. In the above outlined procedure, we can compute a plan
π leading from I to the intermediate state s from which
≺h is recomputed: we can exploit the plan π and use the
pattern of π instead of≺g , thereby eliminating the actions
in ≺g which are not necessary to reach the state s.
In the following, we present procedures that exploit the

three aforementioned ideas. This allows us to formally state
their correctness and completeness. Additionally, the first
two procedures correspond to ablation studies of the third,
which incorporates all three ideas. The correctness and com-
pleteness of the procedures rely on the following theorem. A
pattern ≺ is n-complete if ≺ is a supersequence of a pattern
obtained by concatenating n simple and complete patterns.
Theorem 2. Let Π be a numeric planning problem having a
valid plan of length n. Let ≺ be a n-complete pattern. Π≺

1
is satisfiable.

Algorithm 1 PATTYS algorithm. Input: a numeric planning
problem Π = ⟨VB , VN , A, I,G⟩. Output: a valid plan for Π.

1: function PATTYS(Π)
2: ≺g ← ≺h ← COMPUTEPATTERN(I, A,G)
3: while TRUE do
4: Π≺g ← I(X ) ∧ T ≺g (X ,A≺g ,X ′) ∧ G(X ′)
5: µ← SOLVE(Π≺g )
6: if µ ̸= 0 then
7: return GETPLAN(µ,≺g)

8: ≺g ← ≺g;≺h

Proof. Let π be a plan of length n and ≺ be an n-complete
pattern. By definition, π is a supersequence of the pattern of
π. Also, π is a subsequence of≺ since for the i-th action in π
we can take its occurrence in the i-th complete pattern in ≺.
Thus, ≺ covers π and the thesis follows from Theorem 1.

Since we are going to present procedures that extend the
pattern≺while keeping n = 1 in Eq. 1, we will simply refer
to Π≺

1 , X0, A≺
0 and X1 as Π≺, X , A≺ and X ′, respectively.

4.1 Concatenating Static Patterns
Algorithm 1 shows the pseudocode for PATTYS, the version
of PATTY that incorporates the idea of iteratively concatenat-
ing a statically computed initial pattern. In PATTYS:

1. COMPUTEPATTERN(s,A,G) returns a simple and com-
plete pattern, that in practice we compute using the ARPG
construction starting from the state s = I . The goal G
is passed as a parameter because the ARPG construction
can sometimes immediately reveal that the problem Π is
not solvable, i.e., that G is not reachable from state s (see
(Scala et al. 2016a)). To simplify the algorithm, we omit
the check for this case.

2. SOLVE(Π≺g ) calls an SMT solver which returns a model
of the given formula if it is satisfiable, and 0 otherwise.

3. GETPLAN(µ,≺g) returns the sequence of actions ordered
as in ≺g , each action ai repeated µ(ai) times.

In PATTYS, the pattern ≺h is statically computed only once
in the initial state I and we start considering the pattern ≺g

equal to ≺h. At Line 5 we check for satisfiability of the for-
mula Π≺g , i.e., we check if G can be satisfied considering
≺g . If no model is returned, i.e., if Π≺g is not satisfiable, we
skip to Line 8, and we concatenate ≺h to ≺g and we start
again from Line 4. The pattern ≺g is thus continuously ex-
tended, each time concatenating ≺h to it, till Π≺g becomes
satisfiable. By Theorem 2, if a valid plan of length n exists,
we are guaranteed to find it after at most n iterations and
calls to SOLVE(Π≺g ). Once a satisfiable model µ is found,
a valid plan is returned at Line 7.

PATTYS(Π) is correct (any returned plan is valid) and
complete (if a valid plan exists, PATTYS(Π) will return one).

Theorem 3. Let Π be a numeric planning problem.
PATTYS(Π) is correct and complete.

Proof. Correctness follows from the correctness of the en-
coding (Theorem 2 in (Cardellini, Giunchiglia, and Maratea



Algorithm 2 PATTYD algorithm. Input: a numeric planning
problem Π = ⟨VB , VN , A, I,G⟩. Output: a valid plan for Π.
1: function PATTYD(Π)
2: ≺g ← ϵ, P ← ∅
3: ≺h ← COMPUTEPATTERN(I, A,G)
4: while TRUE do
5: ≺f ← ≺g;≺h

6: µ← MAXSOLVE(I(X ) ∧ T ≺f (X,A≺f ,X ′), G, P )
7: if |SATG(µ,G)| = |G| then
8: return GETPLAN(µ,≺f )
9: else if |SATG(µ,G)| > |P | then

10: ≺g ← ≺f

11: P ← SATG(µ,G)
12: s← GETSTATE(I, GETPLAN(µ,≺f ))
13: ≺h ← COMPUTEPATTERN(s,A,G)
14: else
15: ≺g ← ≺f

2024a)). For completeness, at each iteration the complete
≺h is concatenated to ≺g . Thus, a valid plan of length n is
found at most at the n-th iteration, since at that point ≺g is
n-complete, and the thesis follow from Theorem 2.

4.2 Concatenating Dynamic Patterns
As the motivating example makes clear, having a single pat-
tern may have a dramatic impact on the number of iterations
and calls to SOLVE in Algorithm 1. In our example, the
pattern computed from the initial state allows finding a plan
satisfying |G − 1| out of the |G| goals in the first iteration,
but we struggle to satisfy the last goal: once the baton is be-
ing held by rN , any alternative pattern, including a random
one, enables the computation of a plan to return the baton
back to r0 in no more, and likely fewer, iterations.

Algorithm 2 shows the pseudocode for PATTYD, the ver-
sion of PATTY that incorporates the idea to dynamically up-
date the pattern by recomputing it whenever new goals are
achieved. In PATTYD,

1. MAXSOLVE(I(X ) ∧ T ≺f (X,A≺f ,X ′), G, P ) calls a
MAX-SMT solver returning an assignment satisfying
I(X ) ∧ T ≺f (X,A≺f ,X ′), all the goals in P , and a max-
imal subset of the goals in G \ P .

2. GETSTATE(I, π) returns the state resulting from the exe-
cution of the sequence π of actions from I .

3. SATG(µ,G) returns the set of goals in G satisfied by the
assignment µ.

In PATTYD, before the search starts, we assign ≺g to the
empty pattern (ϵ), the set P (meant to contain the subset of
goals that can be satisfied with ≺g) to the empty set, and we
compute an initial pattern ≺h from the initial state. Then,

1. we set the pattern ≺f used for the search to ≺g;≺h

(Line 5) and then check whether all the goals in G are
satisfied (Line 7) and,

2. if not, we check whether≺f allows satisfying at least one
more goal (Line 9), in which case we

(a) set ≺g to ≺f ,
(b) update the set P to the new subset of satisfied goals,
(c) update the intermediate state,

Algorithm 3 PATTYDC algorithm. Input: a numeric planning
problem Π = ⟨VB , VN , A, I,G⟩. Output: a valid plan for Π.
1: function PATTYDC(Π)
2: ≺g ← ϵ, P ← ∅
3: ≺h ← COMPUTEPATTERN(I, A,G)
4: while TRUE do
5: ≺f ← ≺g;≺h

6: µ← MAXSOLVE(I(X ) ∧ T ≺f (X,A≺f ,X ′), G, P )
7: if |SATG(µ,G)| = |G| then
8: return GETPLAN(µ,≺f )
9: else if |SATG(µ,G)| > |P | then

10: ≺g ← COMPRESS(GETPLAN(µ,≺f ))
11: P ← SATG(µ,G)
12: s← GETSTATE(I, GETPLAN(µ,≺f ))
13: ≺h ← COMPUTEPATTERN(s,A,G)
14: else
15: ≺g ← ≺f

(d) recompute ≺h from s, and
(e) restart the loop thereby concatenating the newly com-

puted ≺h at the next iteration,

3. otherwise, (Line 15) we set ≺g to ≺f , thereby concate-
nating ≺h once more at the next iteration.

We prove that PATTYD(Π) is correct and complete.

Theorem 4. Let Π be a numeric planning problem.
PATTYD(Π) is correct and complete.

Proof. Correctness follows from the correctness of the en-
coding (Theorem 2 in (Cardellini, Giunchiglia, and Maratea
2024a)). For completeness, assume there exists a valid plan
of length n. If |SATG(µ,G)| < |G| at each step, we keep
concatenating a complete pattern to ≺f . Thus, at the n-
iteration,≺f is n-complete. The thesis follows from the fact
that MAXSOLVE at Line 6 in PATTYD returns a model with
the highest number of goals in G satisfied.

4.3 Compression of the Pattern
In our example, though PATTYD can find a valid plan with
just two iterations, it is still possible to further optimize it by
compressing the pattern ≺f that led to the state s in which
a new goal has been satisfied. Indeed, we can exploit the
plan π that led to s and use the pattern of π. The pattern of
π is the sequence π with all continuous repetitions of an ac-
tion removed – since they can be handled by rolling – (e.g.,
a; a; b; c; c becomes a; b; c). Being a subsequence of ≺f it
may not allow reaching all the states that are reachable with
≺f , on the other hand, by reducing the number of variables
in the encoding, the task of the SMT solver becomes easier.

Algorithm 3 shows the pseudocode for PATTYDC, which
is the same as PATTYD, except that it incorporates the
idea of compressing the dynamically computed pattern.
In this case, we have at Line 10 that ≺g assumes the
value of COMPRESS(π), with π = GETPLAN(µ,≺f ).
COMPRESS(π) returns the pattern of π. PATTYDC(Π) is cor-
rect and complete.

Theorem 5. Let Π be a numeric planning problem.
PATTYDC(Π) is correct and complete.



Solved (out of 20) Time (s) SMT calls Variables Assertions
Domain PDC PD PS PO PDC PD PS PO PDC PD PS PO PDC PD PS PO PDC PD PS PO

BLGRP (S) 20 20 20 20 1.8 1.8 1.8 1.8 1.0 1.0 1.0 1.0 174 174 174 174 436 436 436 436
CNT (S) 20 20 20 20 0.9 0.9 0.9 0.9 1.0 1.0 1.0 1.0 90 90 90 90 225 225 225 225
CNT (L) 20 20 20 20 1.0 1.0 0.9 0.9 1.0 1.0 1.0 1.0 94 94 94 94 211 211 211 211
DEL (S) 8 5 5 5 151.2 179.4 139.3 208.5 2.2 2.2 2.2 2.2 487 887 887 1.0k 1.4k 3.0k 3.0k 3.1k
DRN (S) 16 3 3 3 83.5 255.3 255.3 255.3 8.3 5.7 5.7 5.7 54 95 95 142 137 260 260 344
EXP (S) 4 4 4 2 248.9 244.0 244.1 270.2 4.0 3.0 3.0 3.0 200 193 193 254 554 529 529 612
FARM (S) 20 20 20 20 0.8 0.8 2.9 2.1 1.0 1.0 1.0 1.0 63 63 63 63 120 120 120 120
FARM (L) 20 20 20 20 2.8 2.7 2.1 2.3 1.0 1.0 1.0 1.0 81 81 81 81 146 146 146 146
HPWR (S) 20 20 20 20 19.9 18.9 26.5 19.1 1.0 1.0 1.0 1.0 444 444 444 444 788 788 788 788
MRKT (L) - - - - - - - - - - - - - - - - - - - -
MPRIME (S) 15 13 12 12 130.5 121.8 130.1 142.9 1.2 1.1 1.1 1.1 1.5k 1.5k 1.5k 1.5k 4.6k 4.6k 4.6k 4.6k
PATHM (S) 20 20 17 20 5.1 4.8 51.2 8.0 1.0 1.0 1.0 1.0 1.3k 1.3k 1.3k 1.3k 2.2k 2.2k 2.2k 2.2k
PLWAT (S) 20 7 6 6 11.0 206.4 226.4 215.5 10.2 8.3 8.2 8.2 184 304 299 416 511 872 856 1.1k
RVR (S) 14 10 13 16 106.5 166.2 93.3 100.7 1.4 1.4 1.4 1.4 485 570 570 638 1.1k 1.4k 1.4k 1.5k
SAIL (S) 20 20 20 20 1.0 1.6 1.3 6.4 3.3 3.3 3.3 3.3 66 110 110 135 122 241 241 266
SAIL (L) 20 20 20 20 2.5 5.7 5.7 6.1 1.4 1.4 1.4 1.4 63 68 68 72 154 170 170 175
STLRS (S) 15 15 8 7 84.4 83.7 215.1 219.5 1.0 1.0 1.0 1.0 1.5k 1.5k 1.5k 1.5k 3.1k 3.1k 3.1k 3.1k
SGR (S) 20 20 20 20 5.0 7.7 9.3 11.1 3.4 2.9 2.5 2.5 720 913 844 1.0k 1.9k 2.6k 2.4k 2.6k
TPP (L) 2 2 2 2 270.4 273.8 270.4 270.1 2.5 2.5 2.5 2.5 149 207 207 237 419 621 621 651
ZENO (S) 11 11 11 11 136.4 137.1 136.6 136.5 1.6 1.6 1.6 1.6 363 505 505 542 1.1k 1.7k 1.7k 1.7k
LINEEX (L) 20 20 20 20 1.2 1.0 1.0 1.1 5.2 2.9 2.9 2.9 148 127 127 167 393 329 329 395
All domains 325 290 281 284 73.5 94.2 99.6 102.8 2.1 1.8 1.8 1.8 361.6 397.3 392.1 422.2 847.7 977.8 959.2 1.0k

Table 1: Comparative analysis between PATTYDC (PDC), PATTYD (PD), PATTYS (PS) and PATTYO (PO). The labels (S) and (L) indicate if the
planning problem is Simple or Linear, according to the IPC definition. A “-” means that no problem in the domain was solved by the planner.

Proof. Correctness follows from the correctness of the en-
coding (Theorem 2 in (Cardellini, Giunchiglia, and Maratea
2024a)). For completeness, assume there exists a valid plan
of length n. Each time Line 15 is executed, the last com-
puted complete pattern ≺h is concatenated to ≺f at Line 5,
while each time Line 10 is executed ≺f is compressed.
However, Line 10 is executed only when the number of sat-
isfied goals in G increases. Thus, Line 10 can be executed
at most (|G|−1) times, each time after at most after (n−1)
iterations between two consecutive executions (since after n
execution of Line 5, ≺f would be n-complete and all the
goals in G would be satisfiable). Thus, a valid plan will be
found at most at the p + n-th iteration, where in the worst
case p = (|G| − 1)× (n− 1).

5 PATTYDC on the Motivating Example
Consider the problem Π in the motivating example in
which the goal is that all the runners have to touch
the baton, i.e., with goal G as in Eq. 3. Assume
COMPUTEPATTERN(I, A,G) returns the complete pattern:

≺h = fw0; bw0; xc1; fw1; bw1; . . . ; xcN ; fwN ; bwN .

In such hypotheses, Π≺ is satisfiable and
PATTYS/PATTYD/PATTYDC will return a valid plan at
the first iteration of the main loop.

Now consider the problem Π in the motivating example in
which the baton has to be touched by all the runners and to
be returned to the hands of the first runner r0, i.e., with goal
G as in Eq. 4. We assume COMPUTEPATTERN(I, A,G)
returns the same pattern as before. Then,

1. PATTYS at each iteration i ∈ [1, N ] extends the initial pat-
tern ≺g by considering ≺g = ≺i

h in which ≺i
h denotes

the pattern ≺h concatenated i times. When i = N , ≺i
h is

N -complete, ≺N
h covers the plan for returning the baton

from rN+1 back to r0, and Π≺g is satisfiable. The pat-
tern computed by COMPUTEPATTERN(I, A,G) contains
3N + 2 actions, and thus PATTYS can find a valid plan
when considering a pattern with N × (3N + 2) actions.

2. PATTYD starts with ≺f = ≺h and at the first iteration
it will satisfy the goals of having the baton touched by
all runners by reaching a state s satisfying, for each i ∈
[0, N), xi = L × (i + 1), xN ∈ [L × N,L × (N + 1)],
b0 = . . . = bN−1 = 0, bN = 1 and btd0 = . . . = btdN =
1. Assuming s(xN ) = L× (N + 1), the new pattern ≺′

h
computed in s is:
≺′

h = bwN ; xcN ; fwN ; . . . ; bw1; xc1; fw1; bw0; fw0,

and PATTYD will find a valid plan with ≺f = ≺h;≺′
h.

Every pattern computed by COMPUTEPATTERN(s,A,G)
contains 3N+2 actions, and thus PATTYD is able to find a
valid plan when considering a pattern with 2×(3N+2) =
6N + 4 actions.

3. PATTYDC starts with ≺f = ≺h as PATTYD. Differently
from PATTYD, it will compute the pattern ≺π of the plan
π that led to the state s in which ≺′

h was computed, i.e.,
≺π = fw0; xc1; fw1; . . . ; xcN ; fwN

and PATTYDC will find a valid plan with ≺f = ≺π;≺′
h.

The pattern ≺π contains (2N + 1) actions, and thus
PATTYDC is able to find a valid plan when considering a
pattern with (2N + 1) + (3N + 2) = 5N + 3 actions.

6 Experimental Results
For the experiments, we considered the settings and 20
domains and 20 problems per domain used in the Agile
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Figure 1: Number of problems solved (x-axis) within a given time (y-axis). Planner names are abbreviated. SPP planners are represented
with solid lines. The legend is sorted by total instances solved.

Solved (out of 20) Time (s)
Domain PDC ENCT EN FF NLM PDC ENCT EN FF NLM
BLGRP (S) 20 14 16 2 - 1.8 117.2 81.5 270.2 -
CNT (S) 20 10 12 15 11 0.9 163.8 133.8 95.7 149.8
CNT (L) 20 12 10 8 6 1.0 142.3 170.9 180.0 214.0
DEL (S) 8 14 13 18 9 151.2 117.1 121.7 41.2 165.2
DRN (S) 16 18 16 2 16 83.5 55.4 62.9 268.4 66.0
EXP (S) 4 6 6 - 3 248.9 224.0 212.3 - 253.7
FARM (S) 20 20 20 9 15 0.8 1.8 0.9 188.1 85.3
FARM (L) 20 20 18 15 11 2.8 2.5 48.6 80.5 151.2
HPWR (S) 20 20 2 1 1 19.9 4.6 270.3 285.0 285.1
MRKT (L) - 20 4 - - - 35.0 259.3 - -
MPRIME (S) 15 17 17 17 14 130.5 74.6 68.1 45.1 127.2
PATHM (S) 20 3 2 10 1 5.1 262.8 272.2 154.9 284.2
PLWAT (S) 20 20 16 3 14 11.0 41.1 101.3 268.3 167.2
RVR (S) 14 12 8 10 4 106.5 143.7 197.4 133.3 240.8
SAIL (S) 20 20 20 1 10 1.0 5.0 2.0 285.0 150.3
SAIL (L) 20 2 2 8 15 2.5 270.8 270.6 182.8 96.8
STLRS (S) 15 2 1 4 - 84.4 279.0 288.6 243.8 -
SGR (S) 20 11 8 13 4 5.0 144.5 182.5 122.5 245.7
TPP (L) 2 7 3 2 2 270.4 212.3 255.2 266.7 270.0
ZENO (S) 11 17 19 11 9 136.4 89.5 28.1 135.0 172.5
LINEEX (L) 20 11 9 6 6 1.2 149.5 175.4 211.6 235.0
All domains 325 276 222 155 151 73.5 120.8 152.5 193.4 202.7

Table 2: Comparative analysis of PATTYDC (PDC) and the search
based planners ENHSPCT (ENCT), ENHSP (EN), FF and NLM. A
“-” means that no problem in the domain was solved by the planner
in the cut-off time.

track of the last 2023 Numeric IPC, and also the 20 prob-
lems in the line exchange domain introduced in (Cardellini,
Giunchiglia, and Maratea 2024a). Thus, each system had
a time limit of 5 minutes on an Intel Xeon Platinum 8000
3.1GHz with 8 GB of RAM.

About the systems, we first considered PATTYS, PATTYD

and PATTYDC described in the previous section, and the Plan-
ning as Satisfiability planners

1. OMTPLAN (Leofante et al. 2020),

2. the original SPP procedure PATTYO from (Cardellini,
Giunchiglia, and Maratea 2024a),

3. the system R2∃ by (Cardellini, Giunchiglia, and Maratea
2024a) implementing the relaxed-relaxed-∃ encoding pro-
posed in (Bofill, Espasa, and Villaret 2017), and

4. SPRINGROLL (Scala et al. 2016b).
For these 7 planners, we used Z3 v4.8.7 (De Moura and
Bjørner 2008) for computing the model (if any) satis-
fying the given set of SMT assertions (representing the
hard constraints of the encodings) and also the maxi-
mum number of soft assertions (representing the goals in
PATTYD and PATTYDC). Table 1 presents results only for
PATTYO, PATTYS, PATTYD, and PATTYDC, given that OMT-
PLAN, R2∃, and SPRINGROLL underperformed compared
to PATTYO on every single domain. In the first three subta-
bles of Table 1, we show: the name of the domain (subtable
Domain); the number of solved problems (subtable Solved);
the average time to find a solution, counting the time limit
when the solution could not be found (subtable Time). In the
last three subtables, we considered only the problems solved
by all the planners and show the average number of calls to
the SMT solver (subtable SMT calls); the number of variables
(subtable Variables) and assertions (subtable Assertions) of
the encoding when a solution is found.

Looking at the performance results, the first observation
is that PATTYDC has the best results: PATTYDC can solve the
highest number of problems in each domain but one, im-
proving the number of solved problems in 6 domains (out of
the 10 which PATTYO did not completely solve). Then, we
observe that

1. comparing PATTYS vs PATTYO, the elimination of the in-
termediate state variables obtained by the concatenation
of the pattern, may affect performance, overall leading to
a modest degradation,

2. comparing PATTYDC vs PATTYD/PATTYS/PATTYO, the
compression of the pattern plays a major role in PATTYDC



positive performance, and

3. none of PATTYDC/PATTYD/PATTYS/PATTYO can solve a
problem before the cut-off in the MRKT(L) domain –
where a trader has to go back and forth from different
locations buying and selling articles, similarly to our mo-
tivating example – since all the problems have a single
goal (i.e., |G| = 1) and thus the pattern is never recom-
puted during the search by PATTYDC/PATTYD.

Examining the subtable with the number of calls made to the
SMT solver, we observe that PATTYO and PATTYS yield iden-
tical values, while the count for PATTYD is never higher than
that of PATTYDC. No strict relationship emerges when com-
paring PATTYO/PATTYS with PATTYD and PATTYDC. These
results align with the theoretical findings. As expected, the
total number of variables and the total number of assertions
utilized in the final call to the SMT solver are typically lower
for PATTYDC than for PATTYO/PATTYS/PATTYD, even on do-
mains in which PATTYDC needs more iterations/calls to the
SMT solver. The number of variables and assertions used
by PATTYO are always higher than those used by PATTYS,
as PATTYO uses state variables representing intermediate
states, along with the corresponding assertions. Conversely,
the average number of variables per assertion is higher for
PATTYS than for PATTYO, being 16.9 and 7.3 respectively.

We compared PATTYDC with the search-based planners

1. ENHSP with the configurations sat-hadd (Scala,
Haslum, and Thiébaux 2016), sat-aibr (Scala et al.
2016a) and sat-hmrphj (Scala et al. 2020) – the last
one inspired on the helpful actions of the METRICFF
planner (Hoffmann 2003) – considering for each problem
its best resulting configuration,

2. the very recent extension of the ENHSP planner introduced
in (Chen and Thiébaux 2024) (that we call ENHSPCT),

3. METRICFF (FF) (Hoffmann 2003), and

4. NLM-CUTPLAN (NLM) in the sat configuration which
won the Agile track of that last IPC (Kuroiwa, Shleyfman,
and Beck 2022).2

Table 2 shows for each planner the number of problem it
solves and the average time it takes, the latter computed as
before. As it can be seen, PATTYDC solves more problems on
14 domains, compared to the 10 by ENHSPCT, 5 by ENHSP,
and 2 by FF. Overall, PATTYDC/ENHSP/ENHSPCT/FF/NLM
can solve 325/276/222/155/151 of the 420 problems we con-
sidered, respectively. Interestingly, every planner can solve
more problems than the other search-based planners in at
least one domain, pointing out the importance of the specific
heuristics used. In particular, ENHSPCT heuristics are partic-
ularly effective on the MRKT (L) domain, whose problems
are unsolvable by PATTYDC. On the other hand, the SPP ap-
proach has a significant advantage over search-based plan-
ners on other domains, like SAIL (L).

2For ENHSP, ENHSPCT and NLM, we got in touch with the au-
thors about which configuration to use for their planners. See
https://ipc2023-numeric.github.io/results/presentation.pdf for IPC
results.

The cactus plot in Figure 1 summarizes the performance
of all the systems considered, showing how many prob-
lems each solves within a given time. As it can be seen,
(i) symbolic planners not based on patterns (i.e., R2∃,
OMT, SPRINGROLL) solve the fewest problems, (ii) search-
based approaches (i.e., NLM, FF, ENHSP, ENHSPCT) are in
the middle sections, and (iii) pattern-based approach out-
perform all other planners with PATTYDC being the leader.
Clearly, different figures can be obtained by considering dif-
ferent domains/problems, especially if comparing symbolic
vs search-based planners. Indeed, as also the above results
point out, depending on the domain, search-based planners
may perform far better/worse than symbolic planners.

We also experimented with a 1800s time-limit, obtaining
the same overall picture.

7 Conclusions and Future Work
In this paper, we introduced a novel symbolic procedure for
numeric planning, the first exploiting Planning as Search
techniques in a Planning as Satisfiability setting. We proved
its correctness and completeness. We showed that it per-
forms comparatively well with respect to all the available
numeric planners on the benchmarks of the 2023 IPC Agile
Numeric Track, and we performed ablation studies. This
work opens new avenues for future research on leverag-
ing search techniques in symbolic planning. Indeed, this
is the first work where the choice of how to encode the
planning problem as a logic formula is guided by search.
As the poor performance of PATTYDC/PATTYD/PATTYS on
MRKT (L) show, more research is needed to deal with such
problems where there is only one subgoal, for which the
strategies we propose here are ineffective. Despite this, we
have shown that PATTYDC achieves remarkably good perfor-
mance, even when compared to state-of-the-art search-based
planners that benefit from decades of research into the de-
sign and implementation of effective heuristics. We are cur-
rently working on how to further exploit such research in our
setting, checking whether it produces corresponding bene-
fits. Moreover, it could be very interesting to explore how to
modify the SMT solver to exploit planning-specific branch-
ing heuristics, as proposed in (Giunchiglia, Massarotto, and
Sebastiani 1998; Rintanen 2012).

In this paper, we have mainly concentrated on the numeric
planning fragment, which is a superset of the classical plan-
ning fragment (Haslum et al. 2019) where variables can only
be propositional. It is clear that our approach can be used,
as-is also for classical planning. However, preliminaries re-
sults run on the 2023 Classical IPC (Taitler et al. 2024) show
that even PATTYDC is not yet competitive in the contempo-
rary classical setting. In this fragment, the pattern-based ap-
proach must be extended to leverage the specific character-
istics of the language more effectively (e.g., conditional ef-
fects) and to be able to deal with problems with thousands
of actions, thus challenging to plan with ground actions in
a satisfiability-based approach where the variables become
too many to handle. We plan in the future to explore a lifted
version (Höller and Behnke 2022) of our solver to be able to
deal with these huge problems.

https://ipc2023-numeric.github.io/results/presentation.pdf
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