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Abstract

In this paper, we propose a novel approach for solving linear
numeric planning problems, called Symbolic Pattern Plan-
ning. Given a planning problem Π, a bound n and a pat-
tern –defined as an arbitrary sequence of actions– we en-
code the problem of finding a plan for Π with bound n as
a formula with fewer variables and/or clauses than the state-
of-the-art rolled-up and relaxed-relaxed-∃ encodings. More
importantly, we prove that for any given bound, it is never
the case that the latter two encodings allow finding a valid
plan while ours does not. On the experimental side, we con-
sider 6 other planning systems –including the ones which
participated in this year’s International Planning Competition
(IPC)– and we show that our planner PATTY has remarkably
good comparative performances on this year’s IPC problems.

Introduction
Planning is one of the oldest problems in Artificial Intelli-
gence, see, e.g., (McCarthy and Hayes 1969). Starting from
the classical setting in which all the variables are Boolean, in
simple numeric planning problems variables can also range
over the rationals and actions can increment or decrement
their values by a fixed constant, while in linear numeric
planning problems actions can also update variables to a
new value which is a linear combination of the values of
the variables in the state in which actions are executed, see,
e.g., (Arxer and Scala 2023). Current approaches for solv-
ing a numeric planning problem Π are either search-based
(in which the state space is explored using techniques based
on heuristic search, see, e.g., (Bonet and Geffner 2001)) or
symbolic-based (in which a bound n on the number of steps
is a priori fixed and the problem of finding a plan with bound
n is encoded into a formula for which a decision procedure
is available, see, e.g., (Kautz and Selman 1992)).

In this paper, we propose a novel symbolic approach for
solving numeric planning problems, called symbolic pattern
planning. Given a problem Π and a pattern ≺ – defined as a
sequence of actions – we show how it is possible to gener-
alize the state-of-the-art rolled-up encoding ΠR proposed in
(Scala et al. 2016b) and the relaxed-relaxed-∃ (R2∃) encod-
ing ΠR

2∃ proposed in (Bofill, Espasa, and Villaret 2017),
*These authors contributed equally.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and define a new encoding Π≺ which provably dominates
both ΠR and ΠR

2∃: for any bound n, it is never the case
that the latter two allow to find a valid plan for Π while
ours does not. Further, our encoding produces formulas with
fewer clauses than the rolled-up encoding and also with far
fewer variables than theR2∃ encoding, even when consider-
ing a fixed bound. Most importantly, we believe that our pro-
posal provides a new starting point for symbolic approaches:
a pattern ≺ can be any sequence of actions (even with repe-
titions) and, assuming n = 1, the formula produced by Π≺

encodes all the sequences of actions in which each action in
≺ is sequentially executed zero, one or possibly even more
than one time. Thus, any planning problem can be solved
with bound n = 1 when considering a suitable pattern, and
such pattern can be symbolically searched and incrementally
defined also while increasing the bound, bridging the gap be-
tween symbolic and search-based planning.

To show the effectiveness of our proposal, we (i) con-
sidered the 2 planners, benchmarks, and settings of the just
concluded IPC, Agile track (Arxer and Scala 2023); and
(ii) added 4 other planning systems for both simple and
linear numeric problems. Overall, our comparative analy-
sis included 6 other planners, 3 of which symbolic and 3
search-based. The results show that, compared to the other
symbolic planners, our planner PATTY has always better per-
formance on every domain, while compared to all the other
planners, PATTY has overall remarkably good performances,
being the fastest system able to solve most problems on the
largest number of domains.

The paper is structured as follows. After the preliminar-
ies, we present the rolled-up, R2∃ and our pattern encod-
ings, and prove that the latter dominates the previous two.
Then, the experimental analysis and the conclusion follow.
One running example is used throughout the paper to illus-
trate the formal definitions and the theoretical results.

Preliminaries
We consider a fragment of numeric planning expressible
with PDDL2.1, level 2 (Fox and Long 2003). A numeric
planning problem is a tuple Π = ⟨VB , VN , A, I,G⟩, where
VB and VN are finite sets of Boolean and numeric variables
with domains {⊤,⊥} and Q, respectively (⊤ and ⊥ are the
symbols we use for truth and falsity). I is the initial state
mapping each variable to an element in its domain. A propo-
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sitional condition for a variable v ∈ VB is either v = ⊤ or
v = ⊥, while a numeric condition has the form ψ⊵0, where
⊵ ∈ {≥, >,=} and ψ is a linear expression over VN , i.e., is
equal to

∑
w∈VN

kww+k, for some kw, k ∈ Q. G is a finite
set of goal formulas, each one being a propositional combi-
nation of propositional and numeric conditions. Finally,A is
a finite set of actions. An action a is a pair ⟨pre(a), eff(a)⟩
in which (i) pre(a) is the union of the sets of propositional
and numeric preconditions of a, represented as propositional
and numeric conditions, respectively; and (ii) eff(a) is the
union of the sets of propositional and numeric effects, the
former of the form v := ⊤ or v := ⊥, the latter of the form
w := ψ, with v ∈ VB , w ∈ VN and ψ a linear expression.
We assume that for each action a and variable v ∈ VB ∪VN ,
v occurs in eff(a) at most once to the left of the operator
“:=”, and when this happens we say that v is assigned by a.
In the rest of the paper, v, w, x, y denote variables, a, b de-
note actions and ψ denotes a linear expression, each symbol
possibly decorated with subscripts.
Example. There are two robots l and r for left and right, re-
spectively, whose position xl and xr on an axis correspond
to the integers ≤ 0 and ≥ 0, respectively. The two robots
can move to the left or to the right, decreasing or increas-
ing their position by 1. The two robots carry ql and qr ob-
jects, which they can exchange. However, before exchang-
ing objects at rate q, the two robots must connect setting a
Boolean variable p to ⊤, and this is possible only if they
have the same position. Once connected, they must discon-
nect before moving again. The quantity q can be positive or
negative, corresponding to l giving objects to r or vice versa.
This scenario can be modelled in PDDL with VB = {p},
VN = {xl, xr, ql, qr, q} and the following set of actions:

lftr : ⟨{xr > 0}, {xr −= 1}⟩, rgtr : ⟨{p = ⊥}, {xr += 1}⟩,
lftl : ⟨{p = ⊥}, {xl −= 1}⟩, rgtl : ⟨{xl < 0}, {xl += 1}⟩,
conn : ⟨{xl = xr}, {p := ⊤}⟩, disc : ⟨{p = ⊤}, {p := ⊥}⟩,
exch : ⟨{p = ⊤, ql ≥ q, qr ≥ −q}, {ql −= q, qr += q}⟩,

lre : ⟨{}, {q := 1}⟩,rle : ⟨{}, {q := −1}⟩.
(1)

As customary, v += ψ is an abbreviation for v := v + ψ
and similarly for v −= ψ and we abbreviate −ψ > 0 with
the equivalent ψ < 0.

Let Π = ⟨VB , VN , A, I,G⟩ be a numeric planning prob-
lem. A state s maps each variable v ∈ VB ∪ VN to a
value s(v) in its domain, and is extended to linear expres-
sions, Boolean and numeric conditions and their proposi-
tional combinations. An action a ∈ A is executable in a
state s if s satisfies all the preconditions of a. Given a state
s and an executable action a, the result of executing a in s is
the state s′ such that for each variable v ∈ VB ∪ VN ,
1. s′(v) = ⊤ if v := ⊤ ∈ eff(a), s′(v) = ⊥ if v := ⊥ ∈

eff(a), s′(v) = s(ψ) if (v := ψ) ∈ eff(a), and
2. s′(v) = s(v) otherwise.

Given a finite sequence α of actions a0; . . . ; an−1 of
length n ≥ 0, the state sequence s0; . . . ; sn induced by α
in s0 is such that for i ∈ [0, n), si+1 (i) is undefined if ei-
ther ai is not executable in si or si is undefined, and (ii) is
the result of executing ai in si otherwise.

Consider a finite sequence of actions α. We say that α is
executable in a state s0 if each state in the sequence induced

by α in s0 is defined. If α is executable in the initial state I
and the last state induced byα in I satisfies the goal formulas
inG, we say that α is a (valid) plan. In the following, we will
use α and π to, respectively, denote a generic sequence of
actions and a plan, possibly decorated with subscripts. For
an action a and k ∈ N, ak denotes the sequence consisting
of the action a repeated k times.
Example (cont’d). Assume the initial state is I = {p =
⊥, xl = −XI , xr = XI , ql = Q, qr = 0, q = 1}, where
XI , Q are positive integers. Assuming G = {ql = 0, qr =
Q, xl = −XI , xr = XI}, one of the shortest plans is

rgtXI

l ;lftXI
r ;conn;exchQ;disc;lftXI

l ;rgtXI
r (2)

corresponding to the robots going to the origin, connect, ex-
change the Q items, disconnect, and then go back to their
initial positions.

Symbolic Planning With Patterns
Symbolic Planning
Let Π = ⟨VB , VN , A, I,G⟩ be a numeric planning problem.

An encoding ΠE of Π is a 5-tuple ΠE =
⟨X ,A, I(X ), T (X ,A,X ′),G(X )⟩ where
1. X is a finite set of state variables, each one equipped with

a domain representing the values it can take. We assume
VB ∪ VN ⊆ X .

2. A is a finite set of action variables, each one equipped
with a domain representing the values it can take.

3. I(X ) is the initial state formula, a formula in the set X
of variables defined as∧

v:I(v)=⊥

¬v ∧
∧

w:I(w)=⊤

w ∧
∧

x,k:I(x)=k

x = k.

4. T (X ,A,X ′) is the symbolic transition relation, a for-
mula in the variables X ∪ A ∪ X ′, where X ′ is a copy
of X . Together with T (X ,A,X ′), a decoding function
has to be defined enabling to associate to each model of
T (X ,A,X ′) at least one sequence of actions in A. Stan-
dard requirements for T (X ,A,X ′) are:

(a) correctness: for each sequence of actions α corre-
sponding to a model µ of T (X ,A,X ′), (i) α is ex-
ecutable in the state s in which, for each variable
v ∈ VB ∪ VN , s(v) = µ(v); and (ii) the last state
induced by α executed in s is the state s′ such that, for
each variable v ∈ VB ∪ VN , s′(v) = µ(v′);

(b) completeness: for each state s and action a ∈ A ex-
ecutable in s with resulting state s′, there must be a
model µ of T (X ,A,X ′) such that, for each state vari-
able v ∈ VB ∪ VN , µ(v) = s(v), µ(v′) = s′(v) and
the sequence of actions containing only a corresponds
to µ.

5. G(X ) is the goal formula, obtained by making the con-
junction of the formulas in G, once v = ⊤ and v = ⊥
are substituted with v and ¬v, respectively.

Example (cont’d). The initial state and goal formulas are
(¬p∧xl = −XI ∧xr = XI ∧ql = Q∧qr = 0∧q = 1) and
(ql = 0 ∧ qr = Q ∧ xl = −XI ∧ xr = XI), respectively.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20071



Let ΠE = ⟨X ,A, I(X ), T (X ,A,X ′),G(X )⟩ be an en-
coding of Π. As in the planning as satisfiability approach
(Kautz and Selman 1992), we fix an integer n ≥ 0 called
bound or number of steps, we make n + 1 disjoint copies
X0, . . . ,Xn of the set X of state variables, and n disjoint
copies A0, . . . ,An−1 of the set A of action variables, and
define
1. I(X0) as the formula in the variables X0 obtained by sub-

stituting each variable x ∈ X with x0 ∈ X0 in I(X );
2. for each step i = 0, . . . , n − 1, T (Xi,Ai,Xi+1) as

the formula in the variables Xi ∪ Ai ∪ Xi+1 obtained
by substituting each variable x ∈ X (resp. a ∈ A,
x′ ∈ X ′) with xi ∈ Xi (resp. ai ∈ Ai, xi+1 ∈ Xi+1)
in T (X ,A,X ′);

3. G(Xn) as the formula in the variables Xn obtained by
substituting each variable x ∈ X with xn ∈ Xn in G(X ).

Then, the encoding ΠE of Π with bound n is the formula

ΠEn = I(X0) ∧
n−1∧
i=0

T (Xi,Ai,Xi+1) ∧ G(Xn). (3)

To each model µ of ΠEn , we associate the set of sequences
of actions α0; . . . ;αn−1, where each αi is a sequence of ac-
tions corresponding to the model of T (Xi,Ai,Xi+1) ob-
tained by restricting µ to Xi ∪ Ai ∪ Xi+1, i ∈ [0, n).
In the following, (ΠEn )

−1 is the set of sequences of ac-
tions in A associated to a model of ΠEn . The correctness of
T (X ,A,X ′) ensures the correctness of ΠE : for each bound
n, each sequence in (ΠEn )

−1 is a plan. The completeness of
T (X ,A,X ′) ensures the completeness of ΠE : if it exists a
plan for Π, it will be found by considering ΠE0 , ΠE1 , . . . .

It is clear that the number of variables and size of (3) in-
crease with the bound n, explaining why much of the re-
search has concentrated on how to produce encodings al-
lowing to find plans with the lowest possible bound n.

Rolled-up, Standard and R2∃ Encodings
Let Π = ⟨VB , VN , A, I,G⟩ be a numeric planning prob-
lem. Many encodings have been proposed, each character-
ized by how the symbolic transition relation is computed. In
most encodings (see, e.g., (Rintanen, Heljanko, and Niemelä
2006; Bofill, Espasa, and Villaret 2017; Leofante et al.
2020)), each action a ∈ A is defined as a Boolean vari-
able in A which will be true (resp. false) in a model µ of
T (X ,A,X ′) if action a occurs once (resp. does not occur)
in each sequence of actions corresponding to µ. Here we
start presenting the state-of-the-art rolled-up encoding ΠR

of Π proposed by (Scala et al. 2016b). In ΠR, each action
a ∈ A is defined as an action variable which can get an arbi-
trary value k ∈ N, and this corresponds to have k (consecu-
tive) occurrences of a in the action sequences corresponding
to the models of the symbolic transition relation of ΠR. 1

However, in ΠR it is not the case that each action a can get

1To ease the presentation, our definition of ΠR considers just
the cases α = 0 and α = 1 of Theorem 1 in (Scala et al. 2016b),
which (quoting) “cover a very general class of dynamics, where
rates of change are described by linear or constant equations”.

a value > 1, (e.g., because a cannot be executed more than
once, or it is not useful to execute amore than once), and the
definition of when it is possible to set a > 1 depends on the
form of the effects of a. For this reason, each effect v := e
of an action a is categorized as
1. a Boolean assignment, if v ∈ VB and e ∈ {⊤,⊥}, as for

the effects of the actions conn and disc in (1), or as
2. a linear increment, if e = v+ψ with ψ a linear expression

not containing any of the variables assigned by a, as for
the effects of the action exch and lftr in (1), or as

3. a general assignment, if it does not fall in the above two
categories. General assignments are further divided into

(a) simple assignments, when e does not contain any of
the variables assigned by a, as in the effects of the ac-
tions lre and rle in (1), and

(b) self-interfering assignments, otherwise.
Then, an action a is eligible for rolling if
1. v = ⊥ ∈ pre(a) (resp. v = ⊤ ∈ pre(a)) implies v :=

⊤ ̸∈ eff(a) (resp. v := ⊥ ̸∈ eff(a)), and
2. a does not contain a self-interfering assignment, and
3. a contains a linear increment.
The result of rolling action a for k ≥ 1 times is such that
1. if v += ψ ∈ eff(a) is a linear increment, then the value

of v is incremented by k × ψ, while
2. if v := e ∈ eff(a) is a Boolean or simple assignment,

then the value of v becomes e, equal to the value obtained
after a single execution of a.

On the other hand, if an action a is not eligible for rolling,
a > 1 is not allowed, and this can be enforced through at-
most-once (“amo”) axioms.

In ΠR, the symbolic transition relation T R(X ,A,X ′) is
the conjunction of the formulas in the following sets:
1. preR(A), consisting of, for each a ∈ A, v = ⊥ and
w = ⊤ in pre(a),

a > 0 → (¬v ∧ w), 2

and, for each a ∈ A and ψ ⊵ 0 in pre(a),

a > 0 → ψ ⊵ 0, a > 1 → ψ[a]⊵ 0,

where ψ[a] is the linear expression obtained from ψ by
substituting each variable x with

(a) x+ (a− 1)× ψ1, whenever x += ψ1 ∈ eff(a) is a
linear increment,

(b) ψ1, if x := ψ1 ∈ eff(a) is a simple assignment.
The last two formulas ensure that ψ⊵0 holds in the states
in which the first and the last execution of a happens (see
(Scala et al. 2016b)).

2. effR(A), consisting of, for each a ∈ A, v := ⊥, w := ⊤,
linear increment x += ψ and general assignment y :=
ψ1 in eff(a),

a > 0 → (¬v′ ∧ w′ ∧ x′ = x+ a× ψ ∧ y′ = ψ1).
2We do not use the equivalent formulation (a > 0 → ¬v),

(a > 0 → w), which has a more direct translation to clauses, in
order to save space. Analogously in the rest of the paper.
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3. frameR(VB ∪ VN ), consisting of, for each variable v ∈
VB and w ∈ VN ,

(
∧
a:v:=⊤∈eff(a) a = 0 ∧∧

a:v:=⊥∈eff(a) a = 0) → v′ ≡ v,∧
a:w:=ψ∈eff(a) a = 0 → w′ = w.

4. mutexR(A) consisting of (a1 = 0 ∨ a2 = 0), for each
pair of distinct actions a1 and a2 such that there exists a
variable v with

(a) v ∈ VB , v = ⊥ (resp. v = ⊤) in pre(a1) and v := ⊤
(resp. v := ⊥) in eff(a2), or

(b) v ∈ VN , v := ψ ∈ eff(a1) and v occurring either in
eff(a2) or in pre(a2).

5. amoR(A) consisting of, for each action a not eligible for
rolling,

(a = 0 ∨ a = 1).

Notice that if for action a the formula (a = 0 ∨ a = 1)
belongs to T R(X ,A,X ′), we can equivalently (i) define
a to be a Boolean variable, and then (ii) replace a = 0,
a > 0, a = 1 and a > 1 with ¬a, a, a and ⊥, respectively,
in T R(X ,A,X ′). It is clear that if T R(X ,A,X ′) contains
(a = 0 ∨ a = 1) for any action a, then the rolled-up encod-
ing ΠR reduces to the standard encoding as defined, e.g., in
(Leofante et al. 2020). Equivalently, in the standard encod-
ing ΠS of Π, the symbolic transition relation T S(X ,A,X ′)
is obtained by adding, for each action a, (a = 0 ∨ a = 1)
to T R(X ,A,X ′). The decoding function of the rolled-up
(resp. standard) encoding associates to each model µ of
T R(X ,A,X ′) (resp. T S(X ,A,X ′)) the sequences of ac-
tions in which each action a occurs µ(a) times.

The biggest problem with the rolled-up and standard en-
codings is the presence of the axioms in mutex(A), which
(i) cause the size of T R(X ,A,X ′) to be possibly quadratic
in the size of Π; and (ii) forces some actions to be set to 0
even when it is not necessary to maintain the correctness
and completeness of T R(X ,A,X ′), see, e.g., (Rintanen,
Heljanko, and Niemelä 2006). Indeed, allowing to set more
actions to a value > 0 while maintaining correctness and
completeness, allows finding solutions to (3) with a lower
value for the bound. Several proposals along these lines have
been made. Here we present the R2∃ encoding presented
in (Bofill, Espasa, and Villaret 2017) which is arguably the
state-of-the-art encoding in which actions are encoded as
Boolean variables (though there exist cases in which the
∃-encoding presented in (Rintanen, Heljanko, and Niemelä
2006) allows to solve (3) with a value for the bound lower
than the one needed by the R2∃ encoding).

In theR2∃ encoding, action variables are Boolean and as-
sumed to be ordered according to a given total order <. In
general, different orderings lead to different R2∃ encodings.
In the following, we represent and reason about < consid-
ering the corresponding sequence of actions (which indeed
contains each action in A exactly once) and define Π< to be
theR2∃<-encoding of Π. In Π<, for each action a and vari-
able v assigned by a, a newly introduced variable va with the
same domain of v is added to the set X of state variables.
Intuitively, each new variable va represents the value of v
after the sequential execution of some actions in the initial

sequence of < ending with a. The symbolic transition rela-
tion T <(X ,A,X ′) of Π< is the conjunction of the formulas
in the following sets:
1. pre<(A), consisting of, for each a ∈ A, v = ⊥, w = ⊤

and ψ ⊵ 0 in pre(a),

a→ (¬v≪,a ∧ w≪,a ∧ ψ≪,a ⊵ 0),

where, for each variable x ∈ VB ∪ VN , x≪,a stands for
the variable (i) x, if there is no action preceding a in <
assigning x; and (ii) xb, if b is the last action assigning
x preceding a in <. Analogously, ψ≪,a is the linear ex-
pression obtained from ψ by substituting each variable
x ∈ VN with x≪,a.

2. eff<(A), consisting of, for each a ∈ A, v := ⊥, w := ⊤
and general assignment x := ψ in eff(a),

a→ (¬va ∧ wa ∧ xa = ψ≪,a),
¬a→ (va ↔ v≪,a ∧ wa ↔ w≪,a ∧ xa = x≪,a).

3. frame<(VB ∪ VN ), consisting of, for each variable v ∈
VB and w ∈ VN ,

v′ ↔ v≪,g, w′ = w≪,g,

where g is a dummy action assumed to follow all the
other actions in <.

The decoding function of the R2∃ <-encoding associates
to each model µ of T <(X ,A,X ′) the sequence of actions
obtained from < by deleting the actions a with µ(a) = ⊥.
In the R2∃ <-encoding, there are no mutex axioms and the
size of T <(X ,A,X ′) is linear in the size of Π. However,
as we mentioned previously, it introduces many new state
variables (in the worst case, |VB ∪ VN | × |A|).

The main advantage of ΠR and Π< over ΠS is that the
first two allow to find plans with lower values for the bound.
Example (cont’d). The rolled-up (resp. standard) encoding
of the two robots problem admits a model with bound n = 5
(resp. n = 2XI + Q + 2, and thus n = 5 when XI =
Q = 1). The R2∃ <-encoding admits a model with bound
n = 2(XI−1)+Q if actions in< are ordered as in the plan
(2), and thus n = 1 when XI = Q = 1. In the worst case,
theR2∃<-encoding admits a solution with a bound equal to
the one needed by the standard encoding, and this happens
when actions in < are in reverse order wrt the plan (2).

As the example shows, ΠR and Π< dominate ΠS , while
ΠR and Π< do not dominate each other. Given two correct
encodings ΠE1 and ΠE2 of Π, ΠE1 dominates ΠE2 if for
any bound n, ΠE2

n satisfiability implies ΠE1
n satisfiability.

Theorem 1. Let Π be a numeric planning problem. Let <
be a total order of actions. The rolled-up encoding ΠR, the
R2∃ <-encoding Π< and the standard encoding ΠS of Π
are correct and complete. ΠR and Π< dominate ΠS .

Proof. (Sketch) For the correctness of ΠR (and thus of ΠS)
and Π< see Prop. 3 and Theorem 1 in the respective origi-
nal papers. The completeness of ΠS is taken for granted. A
model of ΠSn with a corresponding plan π is also a model of
ΠRn , and can be easily used to define a model of Π<n with the
same corresponding plan π. This implies the completeness
of ΠR and Π< and the fact that they dominate ΠS .
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Pattern Encoding
Let Π = ⟨VB , VN , A, I,G⟩ be a numeric planning problem.
In the pattern encoding we combine and then generalize the
strengths of the rolled-up and R2∃ encoding by (i) allowing
for the multiple executions of actions; (ii) considering an
ordering to avoid mutexes; and (iii) allowing for arbitrary
sequences of actions.

Consider a pattern ≺, defined as a possibly empty, finite
sequence of actions. In the pattern ≺-encoding Π≺ of Π,
1. X = VB∪VN ∪V , where V contains a newly introduced

variable v≺1;a with the same range of v, for each variable
v and initial pattern ≺1; a of ≺ (i.e., ≺ starts with ≺1; a)
in which a contains a general assignment of v, and

2. A contains one action variable a≺1 ranging over N, for
each initial pattern ≺1; a of ≺.

Then, the value of a variable v ∈ VB ∪VN after one or more
of the actions in ≺ are executed (possibly consecutively mul-
tiple times) is given by σ≺(v), where σ≺(v) is inductively
defined as (i) σ≺(v) = v if ≺ is the empty sequence; and
(ii) for a non-empty pattern ≺ = ≺1; a,
1. if v is not assigned by a, σ≺(v) = σ≺1(v);
2. if v := ⊤ ∈ eff(a), σ≺(v) = (σ≺1(v) ∨ a > 0);
3. if v := ⊥ ∈ eff(a), σ≺(v) = (σ≺1(v) ∧ a = 0);
4. if v += ψ ∈ eff(a) is a linear increment, σ≺(v) =
σ≺1(v) + a× σ≺1(ψ);

5. if v := ψ ∈ eff(a) is a general assignment σ≺(v) = v≺.
Above and in the following, for any pattern ≺1 and linear
expression ψ, σ≺1(ψ) is the expression obtained by substi-
tuting each variable v ∈ VN in ψ with σ≺1(v).
Example (cont’d). Consider (1), and assume ≺ is

lre;rle;lftr;rgtl;conn;exch;disc;rgtr;lftl.

We have two newly introduced variables qlre and qlre;rle,
and for the Boolean variable p,

σ≺(p) = (p ∨ conn > 0) ∧ disc = 0,

and, for the numeric variables in VN = {xl, xr, ql, qr, q},

σ≺(xl) = xl + rgtl − lftl,
σ≺(xr) = xr − lftr + rgtr,
σ≺(ql) = ql − exch× qlre;rle,
σ≺(qr) = qr + exch× qlre;rle,

σ≺(q) = qlre;rle.

The symbolic transition relation T ≺(X ,A,X ′) of Π≺ is
the conjunction of the formulas in the following sets:
1. pre≺(A), which contains, for each initial pattern ≺1; a

of ≺, and for each v = ⊥ and w = ⊤ in pre(a),
a≺1 > 0 → (¬σ≺1(v) ∧ σ≺1(w)),

and, for each numeric precondition ψ ⊵ 0 in pre(a),
a≺1 > 0 → σ≺1(ψ)⊵ 0, a≺1 > 1 → σ≺1(ψ[a])⊵ 0.

2. eff≺(A), consisting of, for each initial pattern ≺1; a of
≺ and variable v such that v := ψ ∈ eff(a) is a general
assignment,

a≺1 = 0 → v≺1;a = σ≺1(v),
a≺1 > 0 → v≺1;a = σ≺1(ψ).

3. amo≺(A) which contains, for each initial pattern ≺1; a
of ≺ in which a is not eligible for rolling,

a≺1 = 0 ∨ a≺1 = 1.

4. frame≺(VB ∪ VN ), consisting of, for each variable v ∈
VB and w ∈ VN ,

v′ ↔ σ≺(v), w′ = σ≺(w).

If ≺ = a1; a2; . . . ; ak (with a1, a2, . . . ak ∈ A,
k ≥ 0), the decoding function associates to each
model µ of T ≺(X ,A,X ′) the sequence of actions
a
µ(a1)
1 ; a

µ(a2)
2 ; . . . ; a

µ(ak)
k , i.e., the sequence of actions listed

as in ≺, each action a repeated µ(a) times. Notice the sim-
ilarities and differences with ΠRn and Π<n . In particular, our
encoding (i) does not include the mutex axioms; and (ii) in-
troduces variables only when there are general assignments
(usually very few, though in the worst case, |VB∪VN |×|A|).

Notice also that we did not make any assumption about
the pattern ≺, which can be any arbitrary sequence of ac-
tions. In particular, ≺ can contain multiple non-consecutive
occurrences of any action a: this allows for models of
T ≺(X ,A,X ′) corresponding to sequences of actions in
which a has multiple non-consecutive occurrences. At the
same time, ≺ may also not include some action a ∈ A:
in this case, our encoding is not complete (unless a is
never executable). Even further, it is possible to consider
multiple different patterns ≺1, . . . ,≺n, each leading to a
corresponding symbolic transition relation T ≺i(X ,A,X ′),
and then consider the encoding (3) with bound n in which
T (Xi,Ai,Xi+1) is replaced by T ≺i(Xi,Ai,Xi+1): in this
case each model of the resulting encoding with bound n will
still correspond to a valid plan, (though we may fail to find
plans with n or fewer actions). Even more, with a suitable
pattern≺, any planning problem can be solved with bound
n = 1 . Such pattern ≺ can be symbolically searched and
incrementally defined while increasing the bound, bridging
the gap between symbolic and search-based planning. Such
outlined opportunities significantly extend the possibilities
offered by all the other encodings, and for this reason, we
believe our proposal provides a new starting point for the
research in symbolic planning.

Here we focus on ≺-encodings with bound n in which we
have a single, a priori fixed, simple and complete pattern.
A pattern is simple if each action occurs at most once, and
is complete if each action occurs at least once. If ≺1; a is a
simple pattern, a≺1 ∈ A (resp. v≺1;a ∈ V ) can be abbrevi-
ated to a (resp. va) without introducing ambiguities, as we
do in the example below.
Example (cont’d). In our case, the given pattern ≺ is sim-
ple and also complete, and pre≺(A) is equivalent to
lftr > 0 → xr > 0, lftr > 1 → xr − (lftr − 1) > 0,

rgtr > 0 → ¬((p ∨ conn > 0) ∧ disc = 0),
lftl > 0 → ¬((p ∨ conn > 0) ∧ disc = 0),

rgtl > 0 → xl < 0, rgtl > 1 → xl + (rgtl − 1) < 0,
conn > 0 → xl + rgtl = xr − lftr,

disc > 0 → (p ∨ conn > 0),
exch > 0 → ((p ∨ conn > 0) ∧ ql ≥ qrle ∧ qr ≥ −qrle),

exch > 1 → (ql ≥ qrle − (exch− 1)× qrle),
exch > 1 → (qr ≥ −qrle + (exch− 1)× qrle).
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eff≺(A) is
lre = 0 → qlre = q, lre > 0 → qlre = 1,

rle = 0 → qrle = qlre, rle > 0 → qrle = −1.

amo≺(A) is
lre = 0 ∨ lre = 1, rle = 0 ∨ rle = 1,

conn = 0 ∨ conn = 1, disc = 0 ∨ disc = 1.

frame≺(VB ∪ VN ) is
p′ ↔ ((p ∨ conn > 0) ∧ disc = 0),

x′l = xl + rgtl − lftl, x′r = xr − lftr + rgtr,
q′l = ql − exch× qrle, q′r = qr + exch× qrle,

q′ = qrle.

The plan (2) belongs to (Π≺
1 )

−1.
Indeed, in the case of the example, the chosen pattern

allows finding a plan with bound n = 1, compared to
the rolled-up and standard encodings which need at least
n = 5, while any R2∃ encoding needs a bound of at least
2(XI − 1) + Q which is equal to 1 only if XI = Q = 1.
Of course, as for the R2∃ encoding, depending on the se-
lected pattern, we get different results. However, our pattern
≺-encoding dominates any R2∃ <-encoding, of course if <
is compatible with ≺. A total order < of actions is compati-
ble with ≺ if < (seen a sequence of actions) can be obtained
from ≺ by removing 0 or more actions.
Theorem 2. Let Π be a numeric planning problem. Let ≺
be a pattern.
1. Π≺ is correct.
2. For any action a, Π≺;a dominates Π≺.
3. If ≺ is complete, then Π≺ is complete.
4. If ≺ is complete, then Π≺ dominates ΠR.
5. If < is a total order compatible with ≺, then Π≺ domi-

nates Π< .

Proof. (Sketch) The correctness of Π≺ follows from the cor-
rectness of T ≺(X ,A,X ′) which can be proved by induction
on the length k of ≺: if k = 0 is trivial, if k > 0 the thesis
follows from the induction hypothesis, mimicking the proof
of Proposition 3 in (Scala et al. 2016b).

Π≺;a dominates Π≺, since each model µ of T ≺ can be
extended to a model µ′ of T ≺;a with µ′(a≺) = 0.

If ≺ is complete, Π≺ completeness follows from its cor-
rectness, the completeness of ΠR, and Π≺ dominates ΠR.

Π≺ dominates ΠR because for each model µR of T R we
can define a model µ≺ of T ≺ in which each action a is ex-
ecuted µR(a) times. Formally, if for each action a ∈ A,
≺1; a, . . . ,≺k; a (k ≥ 1) are all the initial patterns of ≺
ending with a, we have to ensure

∑k
i=1 µ

≺(a≺i) = µR(a).
Since< is compatible with ≺, for any action a there exists

an “<-compatible” action a≺1 with ≺1 an initial pattern of
≺. Π≺ dominates Π< because for each model µ< of T <

there is a model µ≺ of T ≺ assigning 1 to the <-compatible
actions assigned to ⊤ by µ<, and 0 to the others.

According to the Theorem, even restricting to simple and
complete patterns ≺, our pattern ≺-encoding allows to find
plans with a bound n which is at most equal to the bound
necessary when using the rolled-up, standard and R2∃ <-
encodings, the latter with < compatible with ≺.

Implementation and Experimental Analysis
Consider a numeric planning problem Π. Clearly, the per-
formances of the encoding Π≺ may greatly depend on the
pattern ≺. For computing the pattern, we use the Asymp-
totic Relaxed Planning Graph (ARPG) (Scala et al. 2016a).
An ARPG is a digraph of alternating state (Si) and action
(Ai) layers, which, starting from the initial state layer, out-
puts a partition A1, . . . , Ak on the set of actions which is
totally ordered. If a ∈ Ai+1 then any sequence of actions
which contains a and which is executable in the initial state,
contains at least an action b ∈ Ai (0 ≤ i < k). In the
computed pattern, a precedes b if a ∈ Ai and b ∈ Aj with
1 ≤ i < j ≤ k, while actions in the same partition are
randomly ordered.

Example (cont’d). The ARPG construction leads to
the following ordered partition on the set of actions:
{lftr,rgtr,lftl,rgtl,lre,rle}, then {conn}, and
finally {exch,disc}. Depending on whether exch occurs
before or after disc in the pattern, the plan in equation (2)
is found with bound n = 2 or n = 3, respectively.

For the experimental analysis we considered all the do-
mains and problems of the 2023 Numeric International Plan-
ning Competition (IPC) (Arxer and Scala 2023). We com-
pared our planner PATTY with the three symbolic planners
SPRINGROLL (based on the rolled-up ΠR encoding (Scala
et al. 2016b)), a version of PATTY computing the R2∃ <-
encoding Π< with < compatible with ≺, and called it R2∃;
and OMTPLAN (based on the ΠS standard encoding), and
the three search-based planners ENHSP (Scala et al. 2016a),
METRICFF (Hoffmann 2003) and NUMERICFASTDOWN-
WARD (NFD) (Kuroiwa, Shleyfman, and Beck 2022). NFD
and OMTPLAN are the two planners that competed in the
last IPC, ranking first and second, respectively. The plan-
ner ENHSP has been run three times using the sat-hadd,
sat-hradd and sat-hmrphj settings, and for each do-
main we report the best result we obtained (Scala, Haslum,
and Thiebaux 2016; Scala et al. 2020). All the symbolic
planners have been run using Z3 v4.12.2 (De Moura and
Bjørner 2008) for checking the satisfiability of the formula
(3), represented as a set of assertions in the SMT-LIB format
(Barrett, Fontaine, and Tinelli 2016). We then considered the
same settings used in the Agile Track of the IPC, and thus
with a time limit of 5 minutes. Analyses have been run on
an Intel Xeon Platinum 8000 3.1GHz with 8 GB of RAM.

For lack of space, Table 1 presents the results for all the
planners but OMTPLAN, since its encoding is dominated
by the one of SPRINGROLL.3 In the sub-tables/columns, we
show: the name of the domain (sub-table Domain); the per-
centage of solved instances (sub-table Coverage); the aver-
age time to find a solution, counting the time limit when the
solution could not be found (sub-table Time); the average
bound at which the solutions were found, computed con-
sidering the problems solved by all the symbolic planners
able to solve at least one problem in the domain (sub-table

3The table shows the results only for those domains for which
at least one planner was able to solve one problem in the domain.
Our planner is available at https://pattyplan.com
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Coverage (%) Time (s) Bound |X ∪ A ∪X ′| |T (X,A,X ′)|
Domain P R2∃ SR EN FF NFD P R2∃ SR EN FF NFD P R2∃ SR P R2∃ SR P R2∃ SR
BlGroup (S) 100 65 100 100 10 - 1.5 126.5 2.1 48.0 270.2 - 1.0 6.0 1.0 40 250 40 101 331 122
Counters (S) 100 60 100 100 60 50 0.8 153.4 1.1 6.9 129.0 149.1 1.0 14.8 1.0 83 1.3k 83 185 1.4k 250
Counters (L) 95 60 35 45 40 25 4.6 152.2 204.1 180.5 180.0 225.4 2.0 2.0 2.5 26 125 26 58 169 112
Drone (S) 25 15 15 85 10 80 242.8 255.6 257.2 59.9 270.0 65.4 4.7 7.7 9.7 30 146 29 64 191 211
Watering (S) 25 - - 100 10 60 226.8 - - 9.8 276.5 185.2 8.4 - - 61 540 61 145 654 610
Farmland (S) 100 - 100 100 35 75 0.9 - 1.6 0.7 206.8 85.5 1.0 - 2.2 63 690 63 120 773 501
Farmland (L) 100 10 - 75 75 55 1.6 275.1 - 96.8 90.7 151.7 1.0 8.0 - 19 61 17 32 79 62
HPower (S) 100 25 - 10 5 5 14.8 233.3 - 270.4 285.0 285.1 1.0 1.0 - 448 22k 448 788 23k 11k
Sailing (S) 100 - 90 100 5 50 1.0 - 20.0 1.4 285.0 150.3 3.2 - 7.2 49 380 49 86 434 293
Sailing (L) 95 5 - 20 40 70 1.0 297.9 - 241.2 182.9 109.4 1.0 5.0 - 84 951 82 200 1.1k 490
Delivery (S) 25 20 - 65 95 45 232.7 256.0 - 121.2 48.5 165.2 1.0 2.0 - 250 8.0k - 662 8.5k -
Expedit. (S) 15 5 - 10 - 15 253.5 289.0 - 270.3 - 253.7 5.0 10.0 - 105 1.5k - 225 1.6k -
MPrime (S) 55 35 50 85 80 65 139.7 205.4 171.2 49.7 47.5 133.6 1.5 1.5 5.2 467 39k 467 1.2k 39k 19k
Pathways (S) 100 5 5 60 50 5 4.7 286.7 286.4 133.9 154.9 285.0 1.0 6.0 3.0 186 3.3k 186 318 3.5k 521
Rover (S) 85 45 55 35 50 20 77.6 194.5 185.5 204.4 142.1 241.0 1.9 2.0 7.7 360 20k 367 754 20k 10k
Satellite (S) 10 5 15 30 20 20 277.3 292.6 267.7 222.6 229.4 242.2 4.0 4.0 10.0 222 7.4k 183 566 7.8k 5.4k
Sugar (S) 100 25 - 95 65 25 6.8 247.2 - 23.7 119.9 232.9 2.0 2.2 - 495 31k - 1124 32k -
TPP (L) 10 5 - 20 10 10 275.3 284.4 - 244.3 268.4 270.0 3.0 3.0 - 355 10k 278 917 10k 4.0k
Zeno (S) 55 55 - 100 55 45 119.2 129.8 - 20.4 135.0 178.5 2.1 2.3 - 198 6.2k - 577 6.6k -
Total 12 0 3 10 1 1 11 0 0 6 2 0 19 5 2 14 0 14 18 0 0

Table 1: Comparative analysis between the Patty (P) planner, the symbolic planners R2∃ (R2∃), SpringRoll (SR) and the
search-based planners ENHSP (EN), MetricFF (FF) and NumericFastDownward (NFD). The labels S and L specify if the
domain presents simple or linear effects, respectively, see (Arxer and Scala 2023). “k” means ×1000

Bound); the number of variables (sub-table |X ∪A∪X ′|) and
assertions (sub-table |T (X ∪A∪X ′)|) of the encoding with
bound n = 1. For the symbolic planners, the bound is in-
creased starting from n = 1 until a plan is found or resources
run out. A “-” indicates that no problem in the domain was
solved by the planner with the given resources. The table
has been divided based on the average value of |VB |/|VN |:
if |VB |/|VN | < 1 the domain is considered Highly Numeric
(above), and Lowly Numeric (below) otherwise.

From the table, considering the data about the symbolic
planners in the last three sub-tables, two main observations
are in order. First, PATTY always finds a solution within a
bound lower than or equal to the ones needed by the oth-
ers (accordingly with Theorem 2). Second, even consider-
ing the bound n = 1, PATTY produces formulas with (i)
roughly the same number of variables as SPRINGROLL and
far fewer than R2∃; and (ii) (far) fewer assertions than
SPRINGROLL and R2∃. Considering the sub-tables with the
performance data, (i) on almost all the Highly Numeric do-
mains, PATTY outperforms all the planners, both symbolic
and search-based; (ii) in the DRONE and PLANTWATER-
ING domains and in all the Lowly Numeric domains, PATTY
outperforms all the other symbolic planners but performs
poorly wrt the search-based planners: indeed the solution
for such problems usually requires a bound unreachable for
PATTY (and for the other symbolic planners as well); (iii)
overall, PATTY and ENHSP are the planners having the
highest coverage on the highest number of domains, with
PATTY having the best average solving time on more do-
mains than ENHSP (and the other planners as well). Finally,
we did some experiments with the time-limit set to 30 min-
utes, obtaining the same overall picture.

We also considered the LINEEXCHANGE domain, which
is a generalization of the domain in the Example. In this do-
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Figure 1: Performance on the LINEEXCHANGE domain.

main, N = 4 robots are positioned in a line and need to
exchange items while staying in their adjacent segments of
length D = 2. At the beginning, the first robot has Q ∈ N
items and the goal is to transfer all the items to the last robot
in the line. In Figure 1, we show how the planning time
varies with Q: when Q = 1, all the variables are essentially
Boolean (since they have at most two possible values) and all
the symbolic planners are outperformed by the search-based
ones. As Q increases, rolling-up the exchange actions be-
comes more important, and thus PATTY and SPRINGROLL
start to outperform the search-based planners. Patterns al-
low PATTY to perform better than SPRINGROLL, while our
R2∃ planner performs poorly because of the high number of
assertions and variables produced.

Conclusions
We presented the pattern encoding which generalizes the
state-of-the-art rolled-up and R2∃ encodings. We provided
theoretical and experimental evidence of its benefits. We be-
lieve that our generalization provides a new starting point for
the research in symbolic planning. Indeed, more research is
needed to extend the ARPG construction for better patterns.
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