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Abstract

The PDDL+ formalism allows the use of planning techniques
in applications that require the ability to perform hybrid
discrete-continuous reasoning. PDDL+ problems are notori-
ously challenging to tackle, and to reason upon them a well-
established approach is discretisation. Existing systems rely
on a single discretisation delta or, at most, two: a simula-
tion delta to model the dynamics of the environment, and a
planning delta, that is used to specify when decisions can be
taken. However, there exist cases where this rigid schema is
not ideal, for instance when agents with very different speeds
need to cooperate or interact in a shared environment, and a
more flexible approach that can accommodate more deltas is
necessary. To address the needs of this class of hybrid plan-
ning problems, in this paper we introduce a reformulation ap-
proach that allows the encapsulation of different levels of dis-
cretisation in PDDL+ models, hence allowing any domain-
independent planning engine to reap the benefits. Further, we
provide the community with a new set of benchmarks that
highlights the limits of fixed discretisation.

Introduction

The ability to represent hybrid discrete-continuous changes
is crucial for exploiting automated planning techniques in
real-world applications. The PDDL+ language has been in-
troduced and designed to support a compact encoding of
models involving hybrid changes, using specialised con-
structs such as events and processes (Fox and Long 2006).
Hybrid PDDL+ problems are notoriously challenging
to tackle, due to the intertwined nature of numeric vari-
ables and time. A well-established approach to reason upon
hybrid PDDL+ problems is discretisation (Della Penna,
Magazzeni, and Mercorio 2012; Percassi, Scala, and Val-
lati 2023b), which allows breaking down complexity by as-
suming the time is discrete, and so are the actual numeric
changes. A similar assumption is also made in the sim-
pler context of temporal planning through durative actions
(Cushing et al. 2007; Dvorak et al. 2014; Rintanen 2015).
An important aspect of this approach is the ability to re-use
well-established and general search techniques based on for-
ward state-based exploration to tackle PDDL+ problems; it
is indeed widely exploited by existing domain-independent
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planning engines such as DiNo (Piotrowski et al. 2016), UP-
Murphi (Della Penna, Magazzeni, and Mercorio 2012) and
ENHSP (Scala et al. 2016). The first two solvers rely on
only one discretisation step for both simulation (process and
events) and decision (actions), while ENHSP utilises a more
advanced approach that can support two deltas: a (usually
smaller) simulation delta to approximate complex dynamics
and a (usually larger) planning delta to reduce the burden on
planning by avoiding unnecessary decision points.

Notably, there can be cases where even the advanced tech-
nique of using two different discretisation deltas does not en-
able efficient reasoning upon the dynamics of the problem at
hand. In the logistics context, for example, it is common to
have a range of means of transport, each having a different
speed and a different granularity of timings in which actions
must be performed (e.g. a plane is faster than a truck which
is faster than a delivery man) and if the different agents in-
volved have to coordinate, they must necessarily do it at the
discretisation step of the slower one, making the solving un-
necessarily challenging. Even the same agent could benefit
from different granularity in different moments of the plan:
for example, a ship must be finely controlled while manoeu-
vring in the harbour, but its course can be sporadically al-
tered while at open sea. To effectively address the described
class of hybrid problems, approaches capable of supporting
even more than two discretisation deltas are needed.

In this work, we address this need by introducing
a reformulation approach that encapsulates such multi-
ple deltas directly into the PDDL+ models, hence al-
lowing domain-independent planning engines to exploit
the benefits. More precisely, we formally define the dy-
namic planning-discretised PDDL+ problem, and introduce
a sound and complete compilation allowing one to generate
a corresponding PDDL+ model that encodes the notion of
multiple deltas. Any planning engine that supports PDDL+
can reason upon the reformulated models, thus extending the
ability of existing systems to solve challenging hybrid prob-
lems. Further, we present an innovative PDDL+ benchmark
domain, based on a realistic example, that stresses the need
for reasoning with multiple deltas. Our extensive empirical
analysis demonstrates the merits of the introduced reformu-
lation on a range of PDDL+ benchmarks and planning ap-
proaches.
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Figure 1: A representation of the initial state and goal condition of the COOPROVERS motivating example.

Related Work

PDDL+ is the most expressive formalism of the PDDL
family of languages, which also includes PDDL (McDer-
mott et al. 1998) and PDDL2.1 (Fox and Long 2003). The
modelling capabilities of PDDL+ have enabled the use
of automated planning to solve complex real-world prob-
lems such as traffic control (Vallati et al. 2016; El Kouaiti
et al. 2024), safety requirements for cyber-physical sys-
tems (Aineto et al. 2023), train dispatching (Cardellini et al.
2021), unmanned aerial vehicle control (Kiam et al. 2020),
pharmacokinetic optimisation (Alaboud and Coles 2019),
and popular video games (Piotrowski et al. 2023). Finding
solutions for PDDL+ problems remains a daunting chal-
lenge due to its expressive power, further compounded by
the scarcity of planners capable of effectively handling them.
Existing solvers deal with the continuous nature of Or-
dinary Differential Equations (ODEs) in two ways: either
by (i) solving the underlying integral, or (ii) by discretising
the time horizon and treating the ODEs as discrete sums. In
the first category, solvers like SMTPlan+ (Cashmore, Maga-
zzeni, and Zehtabi 2020) and dReal (Bryce et al. 2015) make
use of SMT techniques and mathematical solvers to solve
the integrals. Due to the mathematical complexity of these
operations, both planners apply restrictions to the possible
set of functions which can be expressed in the ODEs. To
the second category, instead, belongs planners like UPMur-
phi (Della Penna, Magazzeni, and Mercorio 2012), DiNo
(Piotrowski et al. 2016) and ENHSP (Scala et al. 2016)
which make use of the Discretise & Validate approach (Della
Penna, Magazzeni, and Mercorio 2012), allowing them to
deal with a larger set of ODEs functions but being depen-
dant of the discretisation step for the validation of the plan.
Both DiNo and UpMurphi consider a single delta, that is
used for both simulating the evolution of the dynamic en-
vironment and for identifying decision points for planning.
A more advanced approach, presented by (Ramirez et al.
2017) and supported by ENHSP, is to consider two different
deltas: a simulation delta, to be as small as possible to bet-
ter approximate complex hybrid dynamics, and a planning
delta, that can be discretionally large, to reduce the burden
on the planning process by avoiding decision points when
no actions are likely to be applicable. An approach simi-
lar in nature, but domain-specific, has been proposed for the
Train Dispatching Problem (Cardellini et al. 2021), where
the ENHSP planner has been modified to skip irrelevant de-
cision points when controlling the dispatching of trains.

Motivating Example

In this section, we present a novel domain, COOPROVERS,
in which two agents operate at different speeds and need
to coordinate to reach the stated goals. Figure 1 provides
an example of an initial state (left) and a goal condition
(right) in which two rovers (Red and Green) are perform-
ing two experiments (A and B) in two separate locations and
need to exchange a tool. For safety reasons, the rovers are
only allowed to move from the base camp to their work-
ing zone, and hence they can only meet at the base camp to
exchange the mentioned tool. The two rovers are equipped
with a battery and solar panels that allow them to recharge.
Since the location of the Experiment B is « times more
distant from the base camp than that of Experiment A, the
Green rover has been equipped with a lighter, more effi-
cient battery (discharges at %% /m), consuming less than
the Red rover (20%/m) and allowing longer trips. At any
point, while moving between the locations, the rovers can
deploy their solar panels and recharge (at the speed of 1%/ s)
for some time before restarting their trip. The battery must
always stay above 20% to allow emergency operations and
the deployment of solar panels. The rovers are also equipped
with a holding container for transporting tools. The speed
of the two rovers is the same (1m/s) but, given the differ-
ences in distances to be covered and discharging rates, their
movements should be modelled and controlled with differ-
ent granularities. For example, with a = 100, the Green
rover would need to move 1.2 km at a velocity of 1 m/s, dis-
charging at 0.2%/m. In this case, it is easy to notice that the
Green robot would benefit more from a discretisation step
one hundred times larger than the Red robot.

Background

A PDDL+ planning problem, denoted by II, is a tuple
(F,X,I,G,A,E,P), where F' is a set of Boolean vari-
ables and X is a set of numeric variables taking values from
{T, L} and Q, respectively. These variables can be used
in propositional formulas with numeric and Boolean con-
ditions. Numeric conditions are of the form (£ > 0), where
¢ is a numeric expression over X and Q, and <€ {<, <, =
,>,>}. Boolean conditions are of the form (f = b) with
f € Fandb € {T,1}. A formula is therefore a propo-
sitional formula using standard connectives from logic in-
volving numeric and Boolean conditions. [ is the descrip-
tion of the initial state, expressed as a full assignment to
all variables in X and F'. GG is the description of the goal,



expressed as a formula. A and E are the sets of actions
and events, respectively. An action or event is a pair (p, e},
where p is a formula and e is a set of Boolean or numeric
effects. A Boolean assignment has the form (f := b), where
f e Fandbe {1, T} Anumeric assignment has the form
(op, x, &), where op € {asgn,inc,dec}, x € X, and € is a
numeric expression over X and Q. Specifically, op can be
the contraction of the keywords assign (z := £), increase
(z := x + &) and decrease (x := x — ). P is a set of pro-
cesses and a process is a pair (p, '), where p is a formula
and ¢’ is a set of continuous numeric effects expressed as
pairs (z, £), where € X and ¢ is a numeric expression de-
fined as above. & represents the additive contribution to the
first derivative of = as time flows continuously. In the dis-
crete context, & is the additive contribution to the discrete
change of . Let a = (p, €) be an action, event, or process,
we use pre(a) to refer to the precondition p of a, and eff{(a)
to the effect e of a. In the following, we will use a, p, and €
to refer to a generic action, process, and event, respectively.

A PDDL+ plan 7 is a pair (m, t.), where m =
({a1,t1), ..., {an, ty)) is a sequence of timestamped actions
and t. € Q> is the makespan within the plan 7 is executed.

A state s is a full assignment of the variables X U F.
An action a (event ¢) is applicable (is triggered) in a state
siff s |= pre(a) (s |= pre(c)). For describing how a state
changes when an action (event) is executed (triggered) we
use the transition function ~y(s, z). Given a state s and an
action/event z € AU E, (s, z) denotes the state resulting
from the application of « in s accordingly to the effect eff{2).
The difference between actions and events is that the former
prescribe may transitions under the control of the agent and
can be executed if the current state meets the preconditions,
while the latter prescribe must transitions, i.e., events are
triggered immediately if their preconditions are met.

Following some early works (Shin and Davis 2005; Per-
cassi, Scala, and Vallati 2023b), we formalise the PDDL+
discrete semantics through the notion of time points, histo-
ries and plan projections. Given a discretisation step & €
Q=0, a time point, denoted by T, is a pair ({t = 0 - n,n'),
where n,n’ € N; t denotes the clock of T while n’ is
the counter used to order actions and events happening at
t. Time points are ordered lexicographically. A history H
over a sequence of time point 7y maps each element from
Ty into a situation. A situation at time point T' is the tu-
ple H(T) = (HA(T),Hs(T)), where H4(T) is the action
executed at time point 7" (if any) and H(T") is the state as-
sociated with T'. We denote by H,(7")[v] and H, (T[] the
value assumed by v € F'U X and by a numeric expres-
sion &, respectively, in state H;(T'). Ejige(T) indicates the
sequence of events triggered in T". !

The validity of plans relies on defining the discrete
PDDL+ plan projection, which describes how 7 is pro-
jected onto a history, taking into account the effects of ac-
tions and changes yielded by events and processes. This
projection is constructed through two types of transitions:

'We assume event-deterministic PDDL+, meaning that when
multiple events are triggered, we can sequence them arbitrarily, al-
ways resulting in the same outcome (Fox and Long 2006).

instantaneous and temporal. Instantaneous transitions orig-

inate from the execution (triggering) of actions (events),

whereas temporal transitions result from the passage of a

discrete quantum of time. Each transition is associated with

a starting time point and one linked to the resulting state after

the transition. These time points are referred to as significant

(STPs).

Intuitively, we define the plan projection based on a set
of rules that describe how history progresses over time. The
first rule (R1) states that if an event is triggered at a spe-
cific time point, a successor state must exist with the same
clock time and an increased counter. The second rule (R2)
states the same for actions. The third and fourth rules (R3-
R4) are used to ensure that the actions in a PDDL+ plan are
projected, preserving their original ordering. The fifth rule
(R5) is used to describe how numeric variables change over
time in a discrete fashion when time advances by a discrete
quantity. Notably, continuous numeric changes are discre-
tised according to the formula A(€,8) =6 - €.

Definition 1 (Discrete PDDL+ Plan Projection). Let IT be

a PDDL+ problem, 5§ € Qs a discretisation step, H an

history and 7 = (m,t.) a plan for L. We say that H is a

discrete projection of 7y which starts in I iff H induces the

STPs TIH = <T0 = <t() = 0,0>,...7Tm = <tm = te,nm>>,

where either t;y 1 =t;+ 06 ortir1 =t;, Hs(Tp) = I and, for

all i € {0, ...,m}, the following rules hold:

R1 [Instantaneous Transition (events)] Ej.ee(T;) # ()
lff Hs(Ti—i-l) = '7(IH5<T2)7 Elrigg(ﬂ))r HA(T1> = <>;
ti+1 =1, and Ni4+1 = Ny + 1,'

R2 [Instantaneous Transition (actions)] Ha(7;) # ()
iff Hy(Ti1) = 7(H, (L), HA(TY)), Buigg(T)) = (),
ti+1 = ti and Ni4+1 = Ny + ].,'

R3 [Action Projection] (a;,t;) € m iff it exists one and
only one T; = (t',n) € Ty s.t Ha(T3) = (a;) and t' =
ti,'

R4 [Actions Ordering] for each (a;, t;), (a;,t;) inm, with
i < jandt; = t; there exists Ty, T, in Ty such that
Ha(Tx) = (a;) and Ho(T,) = (a;) and where t;, =
t, =t; andni <n,;

RS [Temporal Transition] for each pair of contiguous
STPs T; = <t1', ni>, Ti+1 = <ti+1, ni+1> such that
tiv1 = t; + 0, we have that n;1 1 = 0 and the value
of each numeric variable x € X is updated as:

H,(Tiq1)[2] = Ho(T)[z] + Y H(TH)[A(, 6)]

(@ £)€efi(p), ' =2
peP 5. Ha (T, =pre(p)

and values of unaffected variables remain unchanged
(frame-axiom).

Definition 2 (Valid PDDL+ plan under § discretisation). ¢
is a valid plan for IT under § discretisation iff Hy(7,,) E
G and, for each T € Ty such that Hy(T) = (a), then

H,(T) k= pre(a).
Motivating example (cont’d). We are now in the po-

sition to illustrate how to model> the COOPROVERS do-
main using PDDL+. The movement of a rover r from

>The full PDDL+ formulation is available at https:/github.
com/matteocarde/ICAPS24-Delta.



two connected locations a and b is managed through
the triplet of action startMoving(r,a,b), process
moving (r,a,b), and event endMovement (r, a,b).
The moving (r, a,b) action is active only when the bat-
tery is above the threshold of 20% and keeps updating a
variable dRun (r, a, b) whose role is to track the progress
of the rover in going from a to b. During the movement,
process discharge (r) models the draining of the bat-
tery, and does so with a rate of cRate (r). The plan-
ning engine can decide to interrupt and restart the move-
ment through action startCharging(r) and action
stopCharging (r), respectively. Between these two ac-
tions, the process charging (r) gets activated, and the
rover battery charges with a rate of 1%/s. To collect and
exchange tools, the actions drop (r, o) and pick (r, o)
model the handling of the object o by rover r. In the initial
condition, the robots are set in the configuration shown in
Figure 1 (left). The goal is to reach a state where the tool
has been brought to the location of Experiment B (Figure 1

(right)).

Dynamic Planning-Discretised PDDL+

To address the kind of hybrid problems that require the abil-
ity to deal with different dynamics, here we characterise the
dynamic planning-discretised PDDL+ problem.

A dynamic planning-discretised PDDL+ problem (short-
ened as PDDLJ+ problem) is the tuple (IT, K5 = (J, V)),
where I is a PDDL+ problem defined as above and Kj
is the discretisation knowledge detailed as follows. J is a
function AU E — {1,...,m} which partitions the set of
actions and events in m classes such that A = U;nzl A;
and £ = L, Ej, where 4; = {a € A | J(a) = j}
and E; = {¢ € E | J(e) = j}. The number of par-
titions induced by J defines the number of discretisation
variables, i.e., "™ = {01,...,0.,}, with each of them tak-
ing values in Q. Intuitively, every ¢; manages a different
aspect of the problem by controlling when actions from A;
can be executed. V is the function which controls the dy-
namic of the discretisation steps, that is, how the §" vari-
ables change according to the actions applied and the trig-
gered events. Such a function maps every action and event
into a positive rational number plus a special symbol &, i.e.,
V : AUE — Qso U {k}; the special symbol « is the
persist value, and it represents that the affected discretisa-
tion variable remains unchanged when an action (event) z
with V(z) = & is applied (triggered). With a little abuse
of notation, we allow the V function to also accept the ini-
tial state as input and return a full assignment of §™, i.e.,
V(I) = {(6; := 6?) | 6; € 6™}. This allows us to initialise
the discretisation variables in the initial state.

A discretisation knowledge K; may induce a non-
deterministic behaviour w.r.t. events. In particular, it is
known that events can generate non-determinism in PDDL+
problems (Fox and Long 2006) and this can also affect
the discretisation variables §™. That said, we define a dis-
cretisation knowledge K5 as event-deterministic iff for each
state s, and for all e,¢/ € E where J(¢) = J(¢') and
s |= pre(e) Apre(e'), it holds that V(g) = V(¢’). In simpler

terms, for any pair of events belonging to the same partition
that can be triggered simultaneously, the V function consis-
tently prescribes the same discretisation value.

Intuitively, solving a PDDL§+ problem (II, K5) consists
in finding a valid PDDL+ plan for II such that every exe-
cuted action is compatible with the discretisation steps pre-
scribed by K.

To formally define the semantics of PDDLJ+, we begin
by introducing a new set of m memory variables denoted
as {M; = (£;,6;) | j € {1,...,m}}. Each element in this
set is a pair of positive rational numbers. Essentially, for a
given partition j € {1,...,m}, the first component of M;,
i.e., t;, represents the most recent timestamp at which an
action (event) from A; (F;) was executed (triggered). The
second component, i.e., d;, indicates the latest discretization
step assigned to partition j based on the V function. The
combination of these two elements determines all the fol-
lowing timestamps in which the actions from each partition
are applicable.

We now extend the definition of a history to keep track of

the memory variables introduced so far. To be specific, given
a history H, Hy (T') specifies a full assignment to the mem-
ory variables at time point 7. We denote by Hy (T')[M;]
the value assumed by M; = (#;,0;) at T In the plan pro-
jection, for theA first STP, such an assignment is equal to
Hx(To) = {{t; = 0,4; = 6?) | 7 € {1,...,m}}. Fur-
thermore, Hx is updated whenever an action is executed
or an event is triggered, while it persists when time flows.
Whenever an action a from partition j (o € A;) is applied
at time ¢; (R2 applies), the variable fj is updated to ¢; to
keep track of the most recent timestamp when an action from
A; was executed. Simultaneously, the discretisation variable
d; is updated based on V(a): if V(a) is equal to x (persist
value), the current discretisation value is retained; otherwise,
it is modified. When an event ¢ from partition j (¢ € Ej) is
triggered at time ¢; (R1 is applied), the variables fj and J;
are updated to ¢; and V(g), respectively, only if V(¢) # k.
Otherwise, the current values of M are retained. Definition
1 is extended by reshaping R1-R2, which are responsible for
handling actions and events.
Definition 3 (Discrete PDDLJ+ Plan Projection). The dis-
crete PDDL+ plan projection of plan T is defined in the
same way as a discrete PDDL+ plan projection, except for
R1 and R2 which are extended as follows:

R1 Eyige(T2) # () i By (Ti11) = (0L (T5), Buie (7)),
HA(Tz) = <>, ti+1 = ti and Niy1r = Ny + 1,'
furthermore, given € in Epige(T;), Hi (Tiy1)[M ()] =
(Ur(e), Up(€));

R2 Ha(Ty) = (a) iff Hs(Tiy1) = v(Hs(T3), Ha(T2)),
E,r,'gg(Ti)) = <>, tiv1 = t; and njy1 = n; + 1; further-
more, Hy (Ti41)[M j(a)] = (ti,Un(a)).

The functions used for updating Hy (T;11) are defined as:
t; if V(z K

" \tst otherwise

ey = {TO TV

Olast  Otherwise



m=1 ‘ m > 1

V is globally flat Unitary-Static Multiple-Static
V is not globally flat | Unitary-Dynamic | Multiple-Dynamic

Table 1: Different levels of discretisation control allowed by
the discussed PDDLJ+ framework.

where (tiast, Olast) = Hi (T3)[M ()] and z € AU E.

There is also the need to extend Definition 2 for the
PDDLJ+ plan validity. In particular, a plan 7 is valid for
a PDDLd+ problem (IT, K) iff 7, is valid for IT and every
action of 7 is executed in a time-stamp compatible with K.

Definition 4. A PDDL+ plan 7 is valid for a PDDL{+
problem (11, Ks) iff m; is valid for 11 and for each T =
(t,n) € Ty such that Hy(T) = (a), there exists an
s € Nsuch that t = tiast + S - Ojast, where (tiast, Olast) =
Hy (T)[My(a)).

Levels of Discretisation Control

Different levels of discretisation control can be achieved
based on the definition of K, formalised as follows. In par-
ticular, we consider two dimensions: the number of parti-
tions of A U E induced by J, i.e., m, and the dynamic of V
for each partition. If m = 1, K5 induces a unitary PDDLJ+
problem while, if m > 1, a multiple one. If the function
V(z) = kforeach z € A;UE; we say that V is flar w.r.t. the
partition j, otherwise is not. When V is flat for each parti-
tion (globally flat), we say that K5 induces a static PDDLJ+
problem, otherwise a dynamic one. Table 1 shows the differ-
ent levels of discretisation control that can be achieved using
the PDDLJ+ framework.

Most of the PDDL+ discrete planning engines leverage a
unique discretisation step d., both to model the granularity
of the environmental changes and the agent’s actions. Such
a model can be expressed within the PDDL§+ framework
by a discretisation knowledge K5 in which the function J
induces a single partition so that, J(z) = 1 for each z €
A U E, there is a single discretisation step 6* = {d;} that
is initialised as {(d; := d.)} and finally V(z) = & for each
z€ AUE.

ENHSP goes one step further in the direction of handling
PDDL+ models with multiple discretisation steps. It sep-
arates the discretisation step for controlling the granularity
of environmental changes J. and the one for controlling the
granularity of the agent’s actions §,. Such a model is useful
when it is necessary to have a fine approximation of the envi-
ronmental dynamics while the agent, being characterised by
a slower dynamic, performs actions more sporadically. Such
a model can be expressed within the PDDLJ+ framework
by a K in which the function J induces a single partition
so that, J(z) = 1 for each z € A U E, there is a single dis-
cretisation step 0! = {§; } that is initialised as {(d1 := )}
and finally V(z) = k foreachz € AU E.

We have shown that the discretisation models currently
supported by the PDDL+ discrete planning engines fall in
the Unitary-Static level of our framework. All models out-
side this are not supported by existing PDDL+ reasoners.

Motivating example (cont’d). We now show how
the discretisation knowledge Ks can be expressed
in the COOPROVERS domain. Intuitively, the ac-
tions and events can be partitioned by the rover
which performs the action or is subject to the
events. For example, J(startCharging (red))
and J(startMoving(red, expA,bc)) are set
equal to 1 and J(startCharging(green)) and
J(startMoving (green, expB,bc)) equal to 2.
This partition induces the set 62 = {&1,02}. The
function V is set to allow for (i) differentiating the
various time scales of the two rovers when they are
moving, and (ii) allowing for the same timescale
when the two rovers are charging. For this reason,
V(startMoving (red, expA,bc)) (and the symmet-
ric action for moving from bc to expd) is set to 3 while
V(startMoving (green, expB, bc) ) (and symmetric)
is set to 3a, allowing for (i). V(startCharging (red))
and V(startCharging (green)) are all set to 30, al-
lowing for (ii). For all the other actions and events, V returns
. The initial condition sets the initial deltas to their respec-
tive delta of movements: V(I) = {(§; := 3), {d2 := 3a)}.
Since m = 2 and the V function is not flat, the motivating
example falls in the Multiple-Dynamic discretisation control
level, i.e., the most general among the introduced levels.

Encoding of K5 in PDDL+

Let (I = (F,X,[,G,A,E,P),Ks = (J,V)) be a
PDDLJ+ problem. We introduce the FLAT translation,
that produces an equivalent PDDL+ problem Il ., =
(F, Xs,15,G, As, Es, Ps), whose components are pre-
sented in Figure 2. Equation (1) augments the set of numeric
predicates X with new fluents, producing X . The fluent ck
represents the clock of the system, which keeps track of the
flow of time. Two fluents J; and tk; are inserted for every
partition induced by J: the fluent §; keeps track of the value
of the discretisation step of the actions of the partition j dur-
ing the plan and tk; keeps track of the next time an action
will be applicable in that partition (tk stands for tick). Equa-
tion (2) expands the initial state of the original problem with
(i) the set given by V (I), which states the initial value of 6™,
and (ii) the initialisation of the clock and all the ticks of the
system to zero. Equation (3) redefines every original action
a of 11, augmenting its precondition with a condition enforc-
ing the action to be applicable only when the clock reaches
the correct point, established by the value of tk j(,); here
J(a) returns the index of the partition containing a. Both
in Equation (3) and Equation (4), the effects set of an ac-
tion or an event h is augmented with the set u(h), defined in
Equation (5), in which (i) the value of § J(h) 1s changed to its
respective value defined by V (k) only if its value is differ-
ent from the persist value «, and (ii) the value of tk () is
reset to realign the ticks with the correct value of § ;) set
by V(h) (this is because the ticks do not constrain events).
Equation (4) also adds n novel events t ic, defined in Equa-
tion (6), which represent the metronome of the system: the
event tic; is fired when the value of the clock ck has just
surpassed the value of tk; by the simulation delta of the
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Figure 2: Components of the Il ,; PDDL+ problem

planner 4. (i.e., we are in the falling edge) and, in the ef-
fects, it sets the timing (tk;) in which the raising edge will
happen again, taking into consideration the already passed
simulation delta. Finally, in Equations (7) and (8), a new
process t is added, whose job is to increase the value of the
clock ck by the simulation delta é..

It is worth noting that the FLAT translation yielding Il sr
is polynomial on the size of (I, Ky). Specifically, FLAT
introduces 2m + 1 numerical variables (d;, tkj for each
j € {1,...,m} and ck), m events tic;, where m is the
number of partitions of A U F induced by J, and a single
process, i.e., t. Additionally, the preconditions and effects
of actions/events are extended with at most 2 numeric con-
ditions and effects. Also, it is easy to see that FLAT preserves
the length of a plan exactly; as highlighted by (Nebel 2000),
this is a desired property when we talk about compilation
from one planning problem into another.

Theorem 1 (Soundness and Completeness of FLAT w.r.t.
(IT, Ks)). Let (I1, K5) be a PDDLJ+ problem and let g zr
be the PDDL+ obtained by using FLAT. (11, Ks) admits a
solution iff g ar does so.

Proof Sketch. (=) Let m; = (m,t.) be a valid plan for
(I1, Ks), and let 7} = (a1, te) be the plan for Iy oy con-
structed in such a way that: for each ¢-th time-stamped action
(a;, t;) in 7, there exists an i-th time-stamped action (a/, t;)
in T 1, where a) € Aj is the action a; € A extended with
the preconditions and effects introduced by FLAT.

To prove that 7} is a valid plan for (II, K), we approach
the proof modularly. Firstly, we note that the problem Il sr
is an extended version of II. Therefore, FLAT does not affect
the original part of the problem and 7 achieves G.

The important part to prove is that the actions generated
by the mapping above are applicable w.r.t. the novel vari-
ables. Let H and H’ be the plan projections generated by 7

and 7}, respectively. A key element is to prove that the dis-
cretisation variables 0" evolve in the same way in H and H'.
It is worth noting that in the case of H, the assignments of
0™ are explicitly kept within H, whereas in H’, they are vari-
ables that are part of the problem Il ,r. Specifically, the §™
variables of Hx change when an action (event) is applied
(triggered) according to the updating rules R1-R2 of Def-
inition 3, and remain unchanged in other cases. Similarly,
the ™ C X variables of I sy change whenever an action
(event) from As (Ej) is applied (triggered). Given the defini-
tions of R1 and R2, along with the actions A and events Fj,
it is evident that the 0™ variables are synchronised across all
STPs in both H and H'.

Now, it remains to prove that the actions of 7 ,r are ap-
plicable. Since FLAT does not affect /' U X of II, the proof
focuses only on the new variables {ck} U J;_,{d;, tk;}.
Additionally, it is important to note that for a given parti-
tion A; of A, each compiled action from A; only affects
and is affected by tk; and J,. Therefore, since the parti-
tions of actions of As do not affect each other, we build the
proof by examining a single partition and then generalise
the result. So, for a given partition j, let % = (T7, ..., Tnj>
(Th e = (1Y, ..., TT’LJ,)) be the sequence of STPs in H (H')
associated with the application of the n; actions from the
partition j. We prove by induction that the actions applied in
T2 .+ are applicable. The case base (i = 1) trivially proves
if t; = 0.If t; > 0, we leverage that, (i) Is = (tk; =
0) A {ck = 0), (i) Hg (T1)[M;] = Hy (To)[M;] = (0,07)
and then t; = s - 5? and (iii) for each T} < T < Tj,
H{(T")[;] = 47. Combining these conditions, we obtain
that in [0,¢,] the event tic; is triggered s = 1 /47 times
in the STPs 77 = (z - 5}) + dc), where z € {0,...,s — 1}.
When z = s — Land ck = (s — 1) - 07 + 0, tic; sets
tk; = ck + 5? — 0 = s- 6?. Such a value persists until
t1 is reached, so that H,(T]) |= (ck = tk;) [= pre(a}).
For the induction step, we assume truly the statement for
some 1 < ¢ < n; and prove this for 7 + 1. If ¢,41 = %;,
it is easy to see that aj,, is applicable if a; is too (in-
ductive hypothesis). If ¢;11 > ¢;, we leverage that, (i)
H.(T!) E pre(a)) E (ck = tk;) (inductive hypothe-
sis), (i) Hyx (T}) = (¢, V(a;) = 6;) and (iii) for each
T) < T < Tf,, H(T")[6;] = 07. Similarly to the case
base, combining these conditions, we obtain that in [t;, t;11]
the event tic; is triggered s = (t;41 — t;)/6" times in the
STPsT' = (t;+z-0;+0dc,n), where z € {0, ..., s—1}, thus
obtaining a state H{, (T 41) = (ck = tk;) = pre(aj ;).
(<) We can proceed in the opposite direction, and hence
observing that, starting from a valid plan 7, = (x’, (0, t.))
for g s, we can create a valid plan 7, = (mr, (0, t.)) for
(I1, Ks). The validity of 7, can be deduced by the validity of
7, and in particular by noting that each action in 7, implies
that the corresponding action is applicable in 7, therein. [

Since 11 41 is an extension of I, which does not alter the
original problem, it is easy to see that any solution for I sr
is also a solution for II. However, the converse is not true, as
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Figure 3: Average runtime (CPU-time seconds) achieved by search approaches implemented in ENHSP (E) and UPMurphi (U)
while relying on different discretisation approaches on the COOPROVERS benchmarks.

all plans with timed actions that are incompatible with K
do not admit a corresponding valid one in Iy 4r.

Corollary 1 (Soundness of FLAT w.r.t. IT). Let (I, Ks) be
a PDDLO+ problem and let 1 o+ be the PDDL+ obtained
by using FLAT. Iy o+ admits a solution if 11 does so.

Experimental Analysis

Our experimental analysis aims at assessing how the pro-
posed encoding can affect the performance of PDDL+
domain-independent planning engines. This is done by con-
sidering two sets of benchmarks. The first set focuses on
the COOPROVERS, where the use of the proposed encod-
ing is expected to deliver a significant performance boost
due to the characteristics of the domain. The second set of
experiments is performed on well-known PDDL+ bench-
mark domains with the aim of analysing how our approach
behaves in the Unitary-Static setting (i.e., only one con-
stant discretisation step). The automatic translation from
a PDDL+ domain and problem file and a discretisation
knowledge K (defined via a JSON file) to a PDDLJ+
problem file has been implemented in the PATTY solver
(Cardellini, Giunchiglia, and Maratea 2024). 3

Due to the nature of the proposed approach, we focus
on planning engines that leverage on discretisation to solve
PDDL+ problems. Therefore, we consider two state-of-the-
art domain-independent planning engines: ENHSP (Scala
et al. 2016) and UPMurphi (Della Penna, Magazzeni, and
Mercorio 2012). ENHSP incorporates a range of heuris-
tics and search techniques, hence providing the ideal ground
to compare them within the same infrastructure. UPMurphi
shed some light on how a radically different approach to dis-
cretised PDDL+ can be affected by the proposed transla-
tions. In our analysis, we used the default A* search paired
with the default aibr heuristic (Scala et al. 2016), the add
heuristic (Scala, Haslum, and Thiébaux 2016), and a tra-
ditional blind search. UPMurphi is based on the planning
via model-checking paradigm which automatically trans-
lates discretised PDDL+ to a model-checking formulation,
and then uses blind search to find a solution. The planner
DiNo (Piotrowski et al. 2016), which is built on top of the

3All  benchmarks are available at https:/github.com/
matteocarde/ICAPS24-Delta

UPMurphi framework, did not find any solution to the con-
sidered benchmarks in the given time limit, and hence we
excluded it from the analysis. Experiments are run on a 2.3
GHz Intel Xeon 6140M, with a 300 CPU-time seconds cut-
off time, and 8 GB RAM.

Multiple-Dynamic

In the COOPROVERS domain model, choosing the right dis-
cretisation step is critical to efficiently generate a valid plan:
larger discretisation can lead to draining the battery of the
fastest robot. Indeed, to plan faster when the value of « be-
comes larger, one may consider using a larger discretisation
step, proportional to a.. However, this approach can be prob-
lematic, as the nearest and fastest robot may not have the
possibility to charge before its battery is drained. On the
other hand, the use of a smaller discretisation step makes
the search space deeper and requires more resources to be
explored. Figure 3 shows the results achieved by the consid-
ered planning engines when a range of discretisation options
are exploited: 14, the traditional approach in which there is
a unique discretisation step to model the granularity of the
agent and the environment, i.e., 0. = 9, = 1; 20, the ap-
proach where the planner natively decouples environment
and agent by using J. = 1 and §, = 3 (available only in
ENHSP), and the proposed K5 approach. The K5 approach
is run with . = 1 over the PDDL+ problems obtained by
using the FLAT translation and exploiting the discretisation
knowledge provided for the motivating example in the cor-
responding section. The ENHSP solver has been run with
several heuristics (i.e., add, aibr, mrp) and strategies (i.e.,
A* and GBFS), and we show in the plot the minimum run
time among all these strategies for each «. It can be noted by
the line chart how the presented approach better deals with
the large value of «, allowing to always solve faster than
the 2§ approach. The performance improvement is more
pronounced when a blind search is used, as in the case of
UPMurphi, where the improvements are noticeable already
with small values of «. The displayed results confirm that
the proposed approach can effectively support the reasoning
of domain-independent planning engines in cases where dy-
namics evolving at different speeds are present in a single
planning problem. Further, as a by-product of this work, we
note that the newly introduced COOPROVERS domain can



Baxter Descent HVAC LinearCar SolarRover
1 20 Ko 19 20 Ko 1 26 Kb 19 20 Ko 19 20 Ko
E+AIBR RT (s) | 99.3 8.6 194 | 29.7 1.8 5.7 2783 153.8 1729 | 255.1 119.0 131.6 | 300.0 245.1 287.5
Cov. % | 73.6 100.0 94.7 50 1000 1000 | 10.0 650 550 150 646 604 0.0 20.0 5.0
E+HADD RT (s) | 1269 0.1 16.8 | 300.0 205.6 2634 | 300.0 2.1 61.7 | 300.0 285.8 300.0 | 300.0 1984 275.1
Cov.% | 579 100.0 94.7 0.0 35.0 15.0 0.0 100.0 850 0.0 5.0 0.0 0.0 60.0 15.0
E+BLIND RT (s) | 289.5 1394 212.0 | 300.0 216.8 269.2 [ 300.0 300.0 300.0 | 300.0 285.6 300.0 | 300.0 286.4 296.3
Cov.% | 5.3 579 368 0.0 30.0 15.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 5.0 5.0
U+BLIND RT (s) | 300.0 - 258.7 | 2859 - 20.1 | 300.0 - 297.1 | 300.0 - 149.5 | 300.0 - 300.0
Cov. % | 0.0 - 15.8 5.0 - 100.0 | 0.0 - 5.0 0.0 - 54.2 0.0 - 0.0

Table 2: Average runtime (RT, CPU-time seconds) and coverage (Cov.) achieved by informed and uninformed search approaches
implemented in ENHSP (E) and UPMurphi (U) while relying on different discretisation approaches on well-known benchmark
domains. Average runtime (RT) considers unsolved instances as cut-off time (300 seconds).

provide some interesting test-bed for the planning commu-
nity, to assess aspects of the planning capabilities of domain-
independent approaches that were not considered before.

Unitary-Static

In these settings, we aim to understand if, on well-known
benchmark instance: (i) the proposed approach can improve
the performance of general domain-independent planning
engines, and (ii) the proposed approach allows achieving
performance that are comparable to those of a planning en-
gine natively exploiting a dual discretisation. We consider
the well-known benchmark domains of Baxter, Descent,
HVAC, LinearCar, and Rover.

Table 2 provides an overview of the results. Every ap-
proach is run using §. = 0.1; 26 and K discretise the
agent’s action with §, = 1, the first natively on the plan-
ner side and the second via translation by setting J(h) = 1
and V(z) = 1Vz € AU E; finally, 16 employs ¢, = 0.1.

Remarkably, the use of K5 allows all the considered plan-
ning systems to perform significantly better than when the
standard 1§ techniques are in use. Often, this is not only
reflected in better runtimes, but also in higher coverage.
This strongly indicates that, even in domains where a sin-
gle delta may seem to be appropriate, an intelligent use of
multiple deltas can be beneficial; further, our approach can
allow any planning engine to directly benefit from it. Fi-
nally, the comparison against the 24 technique implemented
in ENHSP shows that the use of the proposed reformulation
of PDDL+ does not add a significant computational over-
head. Of course, techniques that are encoded in a planning
engine lead to better performance, but it is worth reminding
that K5 gives more flexibility and the possibility to tailor the
discretisation step for multiple dynamics.

Discussion

It is well-known that, in general, finding a suitable discreti-
sation for a continuous system is a challenging task (Della
Penna, Magazzeni, and Mercorio 2012). On the one hand,
a finer discretisation leads to a more accurate approxima-
tion of the continuous behaviour. On the other hand, a more
coarse discretisation reduces the size of the search space
and fosters solvability. This problem is, of course, exacer-
bated in approaches where multiple deltas need to be set,
i.e. ENHSP or the solution proposed in this paper. How-
ever, it is worth noting that in many practical cases, it is easy
to find suitable discretisation values, that can be implied by

system constraints or by domain knowledge. When multiple
agents or systems need to interact, an analysis of the great-
est common divisor and of the minimum common multiple
among considered delta values for the agents can shed some
light on promising values to be used to ensure a good ap-
proximation of the interaction points among agents. In ex-
treme cases, where the application domain or the charac-
teristics of the problem at hand do not easily allow identify-
ing suitable discretisation values, the methodology proposed
by Della Penna, Magazzeni, and Mercorio (2012) is to start
with a coarse discretisation and refine it until the approxi-
mation error is within an acceptable threshold. The overall
plan-validate framework can support this approach, and has
been extensively evaluated in PDDL+ hybrid planning (Per-
cassi, Scala, and Vallati 2023a).

Conclusion

Discretisation is a well-established approach to reason upon
challenging hybrid PDDL+ problems. The vast majority
of existing approaches are based on a single discretisation
step, and ENHSP is the only approach that can leverage
two different discretisation steps in a domain-independent
fashion. With the aim of taming complex PDDL+ prob-
lems where multiple deltas are needed to efficiently gener-
ate solutions, in this paper we presented a reformulation ap-
proach that allows any domain-independent planning engine
to exploit multiple discretisation steps. The formalised no-
tion also allowed us to categorise different levels of discreti-
sation control. The performed experimental analysis high-
lights the benefits of the discretisation knowledge K in
problems characterised by the coexistence of different dy-
namics, and also shows the capabilities of the approach on
well-known PDDL+ benchmark domains. Our experimen-
tal analysis also indicates that the existing benchmarks for
PDDL+ lack of variety in terms of modelled dynamics; our
motivating example fills this gap, and the proposed approach
can equip existing planning engines with the means to solve
this class of hybrid planning problems.

As future work, we are interested in investigating ap-
proaches that can cover the whole range of discretisation
control levels shown in Table 1. We also plan to explore the
synergies that can be generated between multiple discreti-
sation reformulations and domain-independent heuristics, to
design models that can generate search spaces easier to be
navigated by planning engines.
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