
Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

Symbolic pattern planning

Matteo Cardellini a,∗, Enrico Giunchiglia a, Marco Maratea b

aDIBRIS, Università di Genova, Genova, Italy
bDeMaCS, Università della Calabria, Rende, Italy

a r t i c l e i n f o

Keywords:
Automated planning
Classical and numeric planning
Symbolic planning

 a b s t r a c t

In this paper, we propose a novel approach for solving automated planning problems, called
Symbolic Pattern Planning. Given a deterministic planning problem Π, we propose to compute
a plan by first fixing a pattern –defined as an arbitrary sequence of actions– and then define a
formula encoding the state resulting from the sequential execution of the actions in the pattern,
starting from an arbitrary initial state. By allowing each action in the pattern to be executed
consecutively zero, one or possibly more times, and by imposing the conditions on the initial
and goal states, we can check whether the pattern allows determining a valid plan or whether
the pattern needs to be extended and the procedure iterated. We ground our proposal in the
numeric planning setting, we prove the correctness and also the completeness of the procedure
(provided at each iteration the pattern is extended with a complete sequence of actions), and we
define procedures for the pattern selection and for computing quality plans. When exploiting the
planning as satisfiability approach, we show that our encoding allows to determine a valid plan in
a number of iterations which is never higher than the one needed by the state-of-the-art rolled-up
or relaxed-relaxed-∃ symbolic encodings. On the experimental side, we run an extensive analysis
which included the problems and systems involved in the numeric track of the 2023 International
Planning Competition, showing that the results validate the theoretical findings and that our
planner Patty has remarkably good comparative performances.

1. Introduction

Automated planning is a model-based approach to the control of autonomous agents. Given a description of the possible initial
states, the set of goals to achieve and the set of possible actions, the standard task is to build a strategy allowing to reach a state
in which all the goals are satisfied for every possible initial state and action outcome. There are different flavours of planning, each
corresponding to the allowed language, initial states, objectives, and strategies. Here we consider the standard deterministic setting in
which (𝑖) there is only one initial state, (𝑖𝑖) for each state and action there is at most one state resulting from the execution of the action
in the given state, and (𝑖𝑖𝑖) the objective is to find a finite sequence of actions whose executions from the initial state result in a state
satisfying all the goals. Even with such restrictions, there are many different types of planning problems, each corresponding to the
characteristics of the model. For instance, in classical planning the model involves only Boolean variables; in numeric planning variables
can also take numeric values; in temporal planning actions are associated with a duration, and the task also involves determining the
start time of each action.

∗ Corresponding author.
 E-mail addresses: matteo.cardellini@unige.it (M. Cardellini), enrico.giunchiglia@unige.it (E. Giunchiglia), marco.maratea@unical.it (M.
Maratea).

https://doi.org/10.1016/j.artint.2026.104482
Received 5 December 2024; Received in revised form 7 January 2026; Accepted 7 January 2026

Artiϧcial Intelligence 352 (2026) 104482

Available online 16 January 2026
0004-3702/© 2026 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://www.elsevier.com/locate/artint
https://www.elsevier.com/locate/artint
https://orcid.org/0000-0003-3788-9475

$\Pi $

$\exists $

(i)

(ii)

(iii)

$\Pi $

$\pattern $

$\Pi ^\pattern $

(i)

$\Pi $

$\Pi ^\pattern $

(ii)

$\pattern $

$\Pi ^\pattern $

$\Pi $

$\pattern $

$\Pi ^\pattern $

$\Pi ^\pattern $

$\Pi $

$\Pi $

$\Pi $

$\pattern $

$\Pi ^\pattern $

$\Pi ^\pattern $

(i)

(ii)

$n \ge 0$

n

n

(iii)

$n=0$

n

$\Pi ^R$

$\exists $

$\Pi ^\re {}$

$\Pi ^R$

$\Pi ^\re {}$

n

$\Pi $

(i)

(ii)

(iii)

$\pattern $

$\relax R^2\exists $

(i)

(ii)

(iii)

$\Pi $

$\Pi $

$\relax R^2\exists $

$\Pi = \langle V_B, V_N,A, I,G\rangle $

V_B

V_N

$\{\top , \bot \}$

$\Q $

A

a

$\langle \op {pre}(a), \op {eff}(a)\rangle $

$\op {pre}(a)$

a

$v = \top $

$v = \bot $

$v \in V_B$

$\psi \unrhd 0$

$\unrhd \in \{\geq ,>,=\}$

$\psi $

V_N

$\psi $

$\sum _{w\in V_N} k_w w + k$

$k_w, k \in \Q $

$\op {eff}(a)$

$v \asseq \top $

$v \asseq \bot $

$w \asseq \psi $

$v \in V_B$

$w \in V_N$

$\psi $

a

$v \in V_B\cup V_N$

v

$\op {eff}(a)$

$\asseq $

v

a

$v \pluseq \psi $

$v \asseq v + \psi $

$v \minuseq \psi $

$\psi < 0$

$-\psi > 0$

$\psi \leq 0$

I

$V_B \cup V_N$

G

G

$\Pi = \langle V_B, V_N,A, I,G\rangle $

s

$v\in V_B \cup V_N$

$s(v)$

$a \in A$

s

s

a

s

a

a

s

$s'=res(a,s)$

$v \in V_B \cup V_N$

$s'(v) = \top $

$v \asseq \top \in \op {eff}(a)$

$s'(v) = \bot $

$v \asseq \bot \in \op {eff}(a)$

$s'(v) = s(\psi)$

$(v \asseq \psi) \in \op {eff}(a)$

$s'(v) = s(v)$

$\alpha = a_1;\ldots ;a_n$

$n > 0$

$s_0; \ldots ; s_n$

$\alpha $

s_0

$i \in [0,n)$

s_{i+1}

a_{i+1}

s_i

s_i

$res(a_{i+1},s_i)$

a_{i+1}

s_i

s_n

$\alpha $

s_0

s_n

$\alpha $

s_0

$res(\alpha ,s_0)$

\begin {equation*}s_n = res(\alpha ,s_0) = res(a_{n},res(a_{n-1},res(\ldots res(a_1,s_0)\ldots))).\end {equation*}

$n=0$

$\alpha $

$\epsilon $

s

$\epsilon $

s

$res(\epsilon ,s)~=~s$

$res(\alpha ,I)$

G

$\alpha $

l

r

x_l

x_r

≤ 0

≥ 0

q_l

q_r

p

$\top $

q

$+1$

-1

l

r

$V_B = \{p\}$

$V_N = \{x_l, x_r, q_l, q_r, q\}$

\begin {equation}\label {eq:ex} \begin {array}c \ttt {lftr}: \tuple {\set {x_{r} > 0}, \set {x_{r} \minuseq 1}}, \
\ttt {rgtr} : \tuple {\set {p = \bot }, \set {x_{r} \pluseq 1}},\\ \ttt {lftl}: \tuple {\set {p = \bot }, \set {x_{l} \minuseq 1}}, \
\ttt {rgtl} : \tuple {\set {x_{l} < 0}, \set {x_{l} \pluseq 1}},\\ \ttt {conn}:\langle \set {x_l = x_r}, \set {p\asseq \top } \rangle , \
\ttt {disc}: \langle \set {p = \top },\set {p \asseq \bot } \rangle , \\ \ttt {exch}:\langle \set {p = \top , q_{l} \geq q, q_{r} \geq -q}, \set {q_{l} \minuseq q, q_{r} \pluseq q } \rangle , \\ \ttt {lre}:\langle \set {}, \set {q \asseq 1} \rangle , \ttt {rle}:\langle \set {}, \set {q \asseq -1} \rangle . \end {array}\end {equation}

$\ttt {lftr}$

$\ttt {rgtr}$

$\ttt {lftl}$

$\ttt {rgtl}$

$I = \{p := \bot , x_l := -X_I, x_r := X_I, q_l := Q, q_r := 0, q := 1\}$

$X_I, Q \in \mathbb {N}$

$G= \set {q_l = 0, q_r = Q, x_l = -X_I, x_r = X_I}$

\begin {equation}\label {eq:ex:shortest-plan} \!\!\ttt {rgtl}^{X_I};\ttt {lftr}^{X_I};\ttt {conn};\ttt {exch}^{Q}; \ttt {disc}; \ttt {lftl}^{X_I};\ttt {rgtr}^{X_I}\!\end {equation}

a

$m \in \N $

a^m

a

m

$m=0$

$a^m = \epsilon $

Q

v, w, x, y

a, b

$\psi $

$\alpha $

$\pi $

$\pattern $

$\alpha , \pi , \pattern $

$\alpha $

$\alpha '$

$\alpha ;\alpha '$

$\alpha '$

$\alpha $

$f(x_1, \ldots , x_n)$

n

$\land $

$\lor $

$\neg $

$\implies $

x_1,\dots ,x_n

f

$\mu : \set {x_1, x_2, \ldots , x_n} \mapsto \set {\top , \bot }$

$\top $

$\bot $

$\mu $

f

$\mu $

\begin {equation*}\exists \mu \colon \set {x_1, x_2, \ldots , x_n} \mapsto \set {\top , \bot }, \text { s.t. } f(\mu (x_1), \ldots , \mu (x_n)) \equiv \top ,\end {equation*}

$\equiv $

$\top \lor \bot \equiv \top $

(i)

$exch$

(ii)

p

q_l, q_r

q

V_B

V_N

(iii)

q_l', q_r'

V_N

\begin {flalign*}exch &\implies p \land (q_l \geq q) \land (q_r \geq q),\\ exch &\implies (q_l' = q_l - q) \land (q_r' = q_r + q)\end {flalign*}

$\Pi = \langle V_B, V_N, A, I,G\rangle $

$\pattern = a_1; a_2; \ldots ; a_k$

A

$k \ge 0$

$\epsilon $

A

a

a

$a1, a2, \ldots ,$

a

$\pattern $

$\Pi ^\pattern $

$\Pi $

$\Pi ^\pattern $

$\alpha $

$\pattern $

$\alpha $

$\pattern $

a_i

≥ 0

a_i

$a_1; \ldots ; a_{i-1}$

$\alpha $

$\pattern $

s'

s

$\alpha $

$\alpha $

s

$s' = res(\alpha ,s)$

$\mX $

$V_B \cup V_N$

$\mA ^\pattern $

$\pattern $

$\mX '$

x'

$x \in \mX $

$\mA ^\pattern $

$\pattern $

$\Pi $

\begin {equation*}\Pi ^{\pattern } = \mI (\mX) \AND \mT ^\pattern (\mX ,\mA ^{\pattern },\mX ') \AND \mG (\mX '),\end {equation*}

$\mI (\mX)$

$\mX $

\begin {equation*}\bigwedge _{v: I(v) = \top } v \wedge \bigwedge _{w: I(w) = \bot } \neg w \wedge \bigwedge _{x, k: I(x) = k} x = k.\end {equation*}

$\mG (\mX ')$

G

(i)

v

v'

(ii)

$v' = \top $

$v' = \bot $

v'

$\neg v'$

$\mT ^\pattern (\mX ,\mA ^\pattern ,\mX ')$

$\pattern $

$\mX \cup \mA ^\pattern \cup \mX '$

$\mG (\mX ')$

$\mX \cup \mA ^\pattern $

$\pattern $

$\pattern $

$\Pi $

$\pattern $

$\Pi ^{\pattern }$

A

$\pattern $

$\Pi $

$\pattern $

$\alpha $

$\pattern $

$\Pi $

$\Pi ^\pattern $

$\pattern $

$\pattern $

$\Pi ^\pattern $

$\Pi $

$\Pi $

$\pattern _I$

A

$\pattern = \epsilon $

$\Pi ^\pattern $

$\pattern $

$\pattern _I$

$\pi $

n

$\pi $

$\pattern $

n

$\pattern $

$\Pi ^\pattern $

n

$\pi $

$\pi $

$\pattern _I$

$\textsc {ComputePattern}(\Pi)$

$\Pi $

$\textsc {Solve}(\Pi ^{\pattern })$

$\Pi ^{\pattern }$

$\textsc {GetPlan}(\mu , \pattern)$

$\mu $

$\Pi ^\pattern $

\begin {equation}\label {eq:returned-plan} a_1^{\mu (a_1)}; a_2^{\mu (a_2)}; \ldots ; a_k^{\mu (a_k)}.\end {equation}

$\Pi ^\pattern $

$\relax (\Pi)$

$\relax (\Pi)$

$\Pi $

$\pattern $

$\Pi ^\pattern $

$\pattern $

$\Pi $

$\relax (\Pi)$

$\relax (\Pi)$

$\pattern $

$\relax (\Pi)$

$\pi $

n

n

$\relax (\Pi)$

$\pi $

$\pattern $

$\relax (\Pi)$

$\pattern $

$\Pi $

$\relax (\Pi)$

n

$\pattern $

n

n

A

$\relax (\Pi)$

\begin {equation*}\pattern _I \leftarrow \textsc {ComputePatternI}(\Pi ,\pattern);\end {equation*}

$\textsc {ComputePatternI}(\Pi ,\pattern)$

n

\begin {equation*}\pattern \leftarrow \textsc {ComputePatternN}(\Pi ,\pattern);\end {equation*}

$\textsc {ComputePatternN}(\Pi ,\pattern)$

n

$\relax (\Pi)$

$\relax (\Pi)$

$\relax (\Pi)$

$\pattern $

$\Pi ^\pattern $

$\Pi $

$\pattern $

$\mT ^\pattern (\mX ,\mA ^\pattern ,\mX ')$

A

$\pattern $

$\Pi ^\pattern $

$\Pi $

$\mX = V_B \cup V_N$

$\mA ^\pattern $

$\mathbb {N}$

$\pattern $

$|\mA ^\pattern | = k$

$i \in [1,k]$

a_i

i

$\pattern $

$\mA ^\pattern $

$\pattern $

a

$\var {} \in \mA ^\pattern $

≥ 0

$\var {} > 1$

$\pattern $

$\var {}$

$\set {0,1}$

$\relax (\Pi)$

$\var {}$

$\var {}>1$

a

a

a

$\var {} > 1$

$v \asseq e$

a

$e = v + \psi $

$\psi $

a

$\ttt {exch}$

$\ttt {lftr}$

e

a

$\ttt {lre}$

$\ttt {rle}$

$\eff (a) = \set {x \asseq y, y \asseq x})$

a

$\alpha =0$

$\alpha =1$

$v = \bot \in \op {pre}(a)$

$v = \top \in \op {pre}(a)$

$v \asseq \top \not \in \op {eff}(a)$

$v \asseq \bot \not \in \op {eff}(a)$

a

a

a

a

m

s

$\Pi $

a

s

s'

$m > 0$

\begin {equation*}s' = res(a^m,s)\end {equation*}

$\psi \unrhd 0$

$\op {pre}(a)$

\begin {equation}\label {eq:prec-rolling} \begin {array}{c} s(\psi) \unrhd 0 \ \text { and } \
s(\psi [m]) \unrhd 0, \end {array}\end {equation}

$\psi [m]$

$\psi $

x

$x + (m-1) \times \psi '$

$x \pluseq \psi ' \in \ttt {eff}(a)$

$\psi '$

$x \asseq \psi ' \in \op {eff}(a)$

v

$s'(v) = \top $

$s'(v) = \bot $

$v \asseq \top \in \op {eff}(a)$

$v \asseq \bot \in \op {eff}(a)$

$s'(v) = s(v) + m \times s(\psi)$

$v \pluseq \psi \in \op {eff}(a)$

$s'(v) = s(\psi)$

$v \asseq \psi \in \op {eff}(a)$

$s'(v) = s(v)$

$\psi \unrhd 0$

a

$\psi \unrhd 0$

a

s

a

$\psi [a]$

a

$\pattern = a_1;\dots ;a_k$

$i \in [0,k]$

$\sigma _i(v)$

$v\in V_B\cup V_N$

$\pattern _i$

$\mX \cup \set {\var {1}, \var {2}, \ldots , \var {i}}$

$i=0$

$\sigma _0(v) = v$

$i \in [1,k]$

$\sigma _i(v)$

$\sigma _i$

$\mX \cup \set {\var {1}, \var {2}, \ldots , \var {i}}$

v

a_i

v

a_i

\begin {equation*}\sigma _i(v) = \sigma _{i-1}(v);\end {equation*}

$v \asseq \top \in \op {eff}(a_i)$

v

$\top $

a_i

\begin {equation*}\sigma _{i}(v) = (\sigma _{i-1}(v) \vee \var {i} > 0);\end {equation*}

$v \asseq \bot \in \op {eff}(a_i)$

v

$\bot $

a_i

\begin {equation*}\sigma _{i}(v) = (\sigma _{i-1}(v) \wedge \var {i} = 0);\end {equation*}

$v \pluseq \psi \in \op {eff}(a_i)$

v

$\psi $

a_i

\begin {equation*}\sigma _{i}(v) = \sigma _{i-1}(v) + \var {i} \times \sigma _{i-1}(\psi),\end {equation*}

$\sigma _{i-1}(\psi)$

$v \in V_N$

$\psi $

$\sigma _{i-1}(v)$

$v \asseq \psi \in \op {eff}(a_i)$

$\var {i}$

$\set {0,1}$

a_i

a_i

v

$\sigma _{i-1}(\psi)$

v

a_i

$\sigma _{i}(v)$

\begin {equation*}\sigma _{i}(v) = \ite (\var {i} > 0, \sigma _{i-1}(\psi), \sigma _{i-1}(v)),\end {equation*}

$\ite (\var {i} > 0, \sigma _{i-1}(\psi), \sigma _{i-1}(v))$

$\sigma _{i-1}(\psi)$

$\sigma _{i-1}(v)$

$\var {i} > 0$

$\pattern $

\begin {equation}\label {eq:ex-pattern} \ttt {lre};\ttt {rle};\ttt {lftr};\ttt {rgtl};\ttt {conn};\ttt {exch}; \ttt {disc};\ttt {rgtr}; \ttt {lftl}.\end {equation}

A

$\sigma (v)$

v

$\pattern $

≥ 0

p

\begin {equation*}\sigma (p) = (p \vee \ttt {conn} > 0) \wedge \ttt {disc} = 0,\end {equation*}

$V_N = \{x_l, x_r, q_l, q_r, q\}$

\begin {flalign*}\sigma (x_l) &= x_l + \ttt {rgtl} - \ttt {lftl}, \\ \sigma (x_r) &= x_r - \ttt {lftr} + \ttt {rgtr}, \\ \sigma (q_l) &= q_l - \ttt {exch} \times q^{\ttt {rle}}, \\ \sigma (q_r) &= q_r + \ttt {exch} \times q^{\ttt {rle}}, \\ \sigma (q) &= q^{\ttt {rle}}.\end {flalign*}

$q^{\ttt {rle}}$

$\ite (rle>0,-1,\ite (lre>0,1,q))$

$\sigma (v)$

$v \in V_B \cup V_N$

$\pattern $

\begin {equation*}\ttt {lftr};\ttt {rgtl};\ttt {conn};\ttt {exch}; \ttt {disc};\ttt {rgtr}; \ttt {lftl}; \ttt {lre};\ttt {rle},\end {equation*}

q

$\sigma (v)$

q_l

q_r

\begin {equation*}\begin {array}{ll} \sigma (q_l) = q_l - \ttt {exch} \times q, \\ \sigma (q_r) = q_r + \ttt {exch} \times q, \end {array}\end {equation*}

q

$\ttt {lre}$

$\ttt {rle}$

$\pattern $

\begin {equation*}\ttt {lftr};\ttt {rgtl};\ttt {conn};\ttt {exch}; \ttt {disc};\ttt {rgtr}; \ttt {lftl}\end {equation*}

$\sigma (v)$

q

\begin {equation*}\sigma (q) = q,\end {equation*}

q

$\pattern $

\begin {equation*}\ttt {lre}1;\ttt {rle}1; \ttt {lftr};\ttt {rgtl};\ttt {conn};\ttt {exch}; \ttt {disc};\ttt {rgtr}; \ttt {lftl}; \ttt {lre}2;\ttt {rle}2,\end {equation*}

q

$\sigma (v)$

p

x_l

x_r

\begin {equation*}\begin {array}{ll} \sigma (q_l) = q_l - \ttt {exch} \times q^{\ttt {rle}1}, \\ \sigma (q_r) = q_r + \ttt {exch} \times q^{\ttt {rle}1}, \\ \sigma (q) = q^{\ttt {rle}2}. \end {array}\end {equation*}

$q^{\ttt {rle}1}$

$\ite (rle1>0,-1,\ite (lre1>0,1,q))$

$q^{\ttt {rle}2}$

$\ite (rle2>0,-1,\ite (lre2>0,1,q^{\ttt {rle}1}))$

$\pattern $

$\mT ^\pattern (\mX ,\mA ^\pattern ,\mX ')$

$\Pi ^\pattern $

$v' \in \mX '$

$\mX \cup \mA ^\pattern $

$\mT ^\pattern (\mX ,\mA ^\pattern ,\mX ')$

$\op {amo}^\pattern (A)$

$i \in [1,k]$

\begin {equation*}\var {i} = 0 \vee \var {i}=1,\end {equation*}

a_i

a

$\sigma _i(v)$

$v \pluseq \psi \in \op {eff}(a_i)$

\begin {equation*}\sigma _{i}(v) = \ite (\var {i}, \sigma _{i-1}(v) + \sigma _{i-1}(\psi), \sigma _{i-1}(v)),\end {equation*}

$\op {pre}^\pattern (A)$

$i \in [1,k]$

$v = \bot $

$w = \top $

$\op {pre}(a_i)$

\begin {equation*}\begin {array}{c} \var {i} > 0 \implies \neg \sigma _{i-1}(v), \quad \var {i} > 0 \implies \sigma _{i-1}(w), \end {array}\end {equation*}

$\psi \unrhd 0$

$\op {pre}(a_i)$

\begin {equation*}\begin {array}{c} \var {i} > 0 \imp \sigma _{i-1}(\psi) \unrhd 0, \ \
\var {i} > 1 \imp \sigma _{i-i}(\psi [\var {i}]) \unrhd 0. \end {array}\end {equation*}

$\op {frame}^\pattern (V_B\cup V_N)$

$v \in V_B$

$x \in V_N$

\begin {equation*}\begin {array}{c} v' \liff \sigma _k(v), \quad x' = \sigma _k(x). \end {array}\end {equation*}

$\pattern $

\begin {equation*}\ttt {lre};\ttt {rle};\ttt {lftr};\ttt {rgtl};\ttt {conn};\ttt {exch}; \ttt {disc};\ttt {rgtr}; \ttt {lftl}.\end {equation*}

$\op {amo}^\pattern (A)$

\begin {equation*}\begin {array}{l} \ttt {lre} = 0 \vee \ttt {lre} = 1, \quad \ttt {rle} = 0 \vee \ttt {rle} = 1, \\ \ttt {conn} = 0 \vee \ttt {conn} = 1, \quad \ttt {disc} = 0 \vee \ttt {disc} = 1. \end {array}\end {equation*}

$\op {pre}^\pattern (A)$

\begin {equation*}\begin {array}{l} \ttt {lftr} > 0 \imp x_r > 0, \; \ttt {lftr} > 1 \imp x_r - (\ttt {lftr} - 1) > 0, \\ \ttt {rgtr} > 0 \imp \neg ((p \vee \ttt {conn} > 0) \wedge \ttt {disc}= 0), \\ \ttt {lftl} > 0 \imp \neg ((p \vee \ttt {conn} > 0) \wedge \ttt {disc}= 0), \\ \ttt {rgtl} > 0 \imp x_l < 0, \; \ttt {rgtl} > 1 \imp x_l + (\ttt {rgtl} - 1) < 0, \\ \ttt {conn} > 0 \imp x_l + \ttt {rgtl} = x_r - \ttt {lftr}, \\ \ttt {disc} > 0 \imp (p \vee \ttt {conn} > 0), \\ \hspace *{-3mm}\ttt {exch} > 0 \imp ((p \vee \ttt {conn} > 0) \wedge q_l \geq q^{\ttt {rle}} \wedge q_r \geq -q^{\ttt {rle}}),\\ \ttt {exch} > 1 \imp (q_l \geq q^{\ttt {rle}} - (\ttt {exch} -1) \times q^{\ttt {rle}}), \\ \ttt {exch} > 1 \imp (q_r \geq -q^{\ttt {rle}} + (\ttt {exch} -1) \times q^{\ttt {rle}}). \end {array}\end {equation*}

$q^{\ttt {rle}}$

$\ite (rle>0,-1,\ite (lre>0,1,q))$

$\op {frame}^\pattern (V_B\cup V_N)$

\begin {equation*}\begin {array}{l} p' \liff ((p \vee \ttt {conn} > 0) \wedge \ttt {disc} = 0),\\ x'_l = x_l + \ttt {rgtl} - \ttt {lftl}, \quad x'_r = x_r - \ttt {lftr} + \ttt {rgtr}, \\ q'_l = q_l - \ttt {exch} \times q^{\ttt {rle}}, \quad q'_r = q_r + \ttt {exch} \times q^{rle}, \\ q' = q^{\ttt {rle}}. \end {array}\end {equation*}

$\Pi ^\pattern $

$\Pi ^\pattern $

$\Pi ^\pattern $

$\Pi $

$\textsc {ComputePattern}(\Pi)$

$\relax (\Pi)$

$\relax (\Pi)$

$n=1$

$\pattern $

$\Pi $

$\pattern $

$\pattern $

$\Pi ^\pattern $

$\pattern = a_1; a_2; \ldots ; a_k$

$k \ge 0$

$\Pi = \tuple {V_B, V_N, A, I, G}$

$\Pi _\emptyset $

$\Pi $

$\Pi _\emptyset = \tuple {V_B, V_N, A, I, \emptyset }$

$\Pi _\emptyset $

$\Pi _\emptyset $

$\mu $

$\Pi ^\pattern _\emptyset $

$\pi = a_1^{\mu (a_1)}; a_2^{\mu (a_2)}; \ldots ; a_k^{\mu (a_k)}$

$\Pi _\emptyset $

$s_k = res(\pi ,I)$

$v \in V_B \cup V_N$

$s_k(v) = \mu (\sigma _k(v)) = \mu (v')$

v

s_k

(i)

v

$\sigma _k$

(ii)

$v' \in \mX '$

k

$\pattern $

$k=0$

$\pattern = \pi =\epsilon $

$s_k = I$

$\Pi ^\pattern _\emptyset $

\begin {equation*}\Pi ^{\pattern }_\emptyset = \mI (\mX) \AND \bigwedge _{v \in V_B} v \equiv v' \AND \bigwedge _{v \in V_N} v = v'.\end {equation*}

$k = i+1 > 0$

$\pi _i = a_1^{\mu (a_1)}; a_2^{\mu (a_2)}; \ldots ; a_i^{\mu (a_i)}$

$\pi = \pi _i; a_k^{\mu (a_k)}$

$s_i = res(\pi _i,I)$

$v \in V_B \cup V_N$

$s_i(v) = \mu (\sigma _i(v))$

s_k

$res(a_k^{\mu (a_k)}, s_i)$

$v \in V_B \cup V_N$

$s_k(v) = \mu (\sigma _k(v)) = \mu (v')$

$\mu (a_k)$

$\mu (a_k) = 0$

$a_k^{\mu (a_k)} = \epsilon $

$s_k = s_i$

$v \in V_B \cup V_N$

$\mu (v') = \mu (\sigma _k(v)) = \mu (\sigma _i(v))$

$\mu (a_k) > 0$

$\mu $

$\Pi ^\pattern $

$\mu $

$\Pi ^\pattern _\emptyset $

$\pi $

$\Pi _\emptyset $

$s_k = res(\pi ,I)$

G

$v \in V_B \cup V_N$

$s_k(v) = \mu (\sigma _k(v)) = \mu (v')$

$\mu $

$\mG (\mX ')$

$\pattern $

$\Pi $

$\pattern $

$\Pi ^\pattern $

$\pi $

$n \le k$

$\Pi $

$\pattern $

s_n

$\pi $

$\pi $

$\Pi ^\pi $

$\mu $

I

$\mA ^\pi $

$v' \in \mX '$

$\mu (v') = s_n(v)$

$\Pi ^\pi $

$\mu $

$\Pi ^\pi $

n

$\Pi _\emptyset $

$\Pi ^\pattern $

$\Pi ^\pi $

$\Pi ^\pattern $

$\pi $

$\Pi ^\pattern $

$\Pi $

$\relax (\Pi)$

$\Pi = \tuple {V_B, V_N, A, I,G}$

$\relax (\Pi)$

$\pattern _I$

$\textsc {ComputePattern}(\Pi)$

$\pattern _I$

$\pattern $

$\Pi ^\pattern $

$\pattern _I$

$\relax (\Pi)$

$n=1$

$\pattern _I$

$\pattern _I$

\begin {equation}\label {eq:ex-pattern-rev} \ttt {lftl}; \ttt {rgtr}; \ttt {disc}; \ttt {exch}; \ttt {conn}; \ttt {rgtl}; \ttt {lftr}; \ttt {rle}; \ttt {lre}\end {equation}

$\relax (\Pi)$

$n=5$

$\pattern _I$

$\relax (\Pi)$

n

$\pattern = a_1; \ldots ; a_k$

$k \ge 0$

$\pattern '$

$a \in A$

a

$\pattern '$

a

$\pattern $

$\pattern '$

$\pattern $

$\Pi ^\pattern $

$\Pi ^{\pattern '}$

$\pattern $

$\pattern $

$\pattern '$

$\pattern $

$\Pi '$

$\Pi $

I

G

$\Pi '^\pattern $

$\Pi '^{\pattern '}$

$\pattern '$

$\pattern $

$\pattern '$

$\pattern $

$\Pi $

$\pattern $

a

$\Pi $

$\pattern +a$

a

$\pattern $

$\pattern +a$

$\pattern $

$\pattern = a_1; \ldots ; a_k$

$\pattern +a = a_1; \ldots ; a_i; a; a_{i+1}; \ldots ; a_k$

$0 \le i \le k$

$\pattern +a$

$\pattern $

$\mu $

$\mT ^{\pattern }$

$\mu '$

$\mT ^{\pattern +a}$

$\mu '(a) = 0$

$\pattern $

$\pattern '$

$\pattern $

$\pattern '$

$\pattern '$

$\pattern $

$\pattern '$

$\pattern $

$i \in [0,k]$

s

$R^{\pattern _i}_s$

$\pattern _i$

s

$R^\epsilon _s = \set {s}$

$i=0$

$i > 0$

$res(a_i^m,s)$

$s \in R^{\pattern _{i-1}}_s$

a_i^m

s

$m \ge 0$

$m \le 1$

a

$R^{\pattern _i}_s$

$\pattern _i$

0

1

s

$i > 0$

s

$R^{\pattern _{i-1}}_s \subseteq R^{\pattern _{i}}_s$

$\pattern '$

$R^{\pattern }_I \subseteq R^{\pattern '}_I$

$\pattern '$

$\pattern $

$\pattern '$

$R^{\pattern }_s \subseteq R^{\pattern '}_s$

s

$\pattern '$

$\pattern $

a_i

$\pattern $

a_i

$\pattern $

$R^{\pattern _{i-1}}_I = R^{\pattern _{i}}_I$

a_i^m

$R^{\pattern _{i-1}}_I$

$m \ge 0$

\begin {equation*}\mI (\mX) \wedge \exists a_1 \ldots \exists a_i. \mT ^{\pattern _i}(\mX ,\mA ^{\pattern _i},\mX ') \wedge \neg \exists a_1 \ldots \exists a_{i-1}. \mT ^{\pattern _{i-1}}(\mX ,\mA ^{\pattern _{i-1}},\mX ').\end {equation*}

a_i

q

1

I

a_i

a_{i+1}

a_i

a_i

a_i

$R^{\pattern _{i-1}}_I$

$\Pi $

$\pattern = a_1; \ldots ; a_k$

$k \ge 0$

$i \in [1,k]$

$i < k$

$a_i = a_{i+1}$

a_i

a_i

$R^{\pattern _{i-1}}_I$

a_i

$\pattern $

a_i

$\mu $

$\Pi ^\pattern $

$\mu '$

$\mu $

a_i

a_{i+1}

$\mu '(a_i) = \mu (a_i) + \mu (a_{i+1})$

$\mu '(a_{i+1}) = 0$

$\Pi ^\pattern $

$\Pi ^{\pattern '}$

a_i

$R^{\pattern _{i-1}}_I$

$R^{\pattern _{i-1}}_I=R^{\pattern _{i}}_I$

\begin {equation*}a_1; \ldots ; a_{i-1}; a_{i+1}; \ldots ; a_j; a_i; a_{j+1}; \ldots ; a_k\end {equation*}

$i < j \le k$

$\pattern $

a_i

a_j

$\pattern $

a_i

$\pattern $

$\pattern '$

$\pattern '$

$\pattern '$

$\pattern $

$\ttt {lftl}$

$\ttt {lftl}$

$R^{\pattern _{i-1}}_I$

a_i

$R^{\pattern _{i-1}}_I$

$R_{\arpg }^{\pattern _{i-1}}$

$R^\epsilon _{\arpg }$

\begin {equation*}R^\epsilon _{\arpg }= \set {\tuple {p,\set {\bot }},\tuple {x_l,[-X_I,-X_I]},\tuple {x_r,[X_I,X_I]},\tuple {q_l,[Q,Q]},\tuple {q_r,[0,0]},\tuple {q,[1,1]}},\end {equation*}

i

a_i

$R^{\pattern _{i}}_{\arpg }$

$R^{\pattern _{i};a_i}_{\arpg }$

a_i

a_i

$R^{\ttt {lre};\ttt {rle};\ttt {lftr};\ttt {rgtl}}_I$

$\ttt {lre};\ttt {rle};\ttt {lftr};\ttt {rgtl}$

$R_{\arpg }^{\ttt {lre};\ttt {rle};\ttt {lftr};\ttt {rgtl}}$

\begin {equation*}\set {\tuple {p,\set {\bot }},\tuple {x_l,[-X_I,+\infty)},\tuple {x_r,(-\infty ,X_I]},\tuple {q_l,[Q,Q]},\tuple {q_r,[0,0]},\tuple {q,[-1,1]}}.\end {equation*}

$\pattern $

i

$R^{\pattern _{i-1}}_I$

$\pattern $

$\pattern $

$R_{\arpg }^{\ttt {lftl}; \ttt {rgtr}}$

$R^\epsilon _{\arpg }$

\begin {equation*}\set {\tuple {p,\set {\bot }},\tuple {x_l,(-\infty ,-X_I]},\tuple {x_r,[X_I,+\infty)},\tuple {q_l,[Q,Q]},\tuple {q_r,[0,0]},\tuple {q,[1,1]}}.\end {equation*}

$\ttt {disc}$

$S_{\arpg }^{\ttt {lftl}; \ttt {rgtr}}$

$R_{\arpg }^{\ttt {lftl}; \ttt {rgtr}; \ttt {disc}} = R_{\arpg }^{\ttt {lftl}; \ttt {rgtr}}$

$\ttt {exch}$

$l=0$

l

$l+1$

l

\begin {equation}\label {eq:arpg} \begin {array}{rl} level\ 0: &\ttt {lftl}, \ttt {rgtl}, \ttt {lftr}, \ttt {rgtr}, \ttt {rle}, \ttt {lre}, \\ level\ 1: &\ttt {conn}, \\ level\ 2: &\ttt {disc}, \ttt {exch}, \end {array}\end {equation}

a_i

l

$< l$

$\pattern $

a

$R^{\pattern _{i-1}}_I$

a_i

$< l$

$\pattern ' = a_1; \ldots ; a_{i-1}; a_{i+1}; a_i; a_{i+2}; \ldots ; a_k$

$0 \le i \le k$

$\pattern $

a_{i+1}

a_i

$\pattern '$

$\pattern _{i-1} = \pattern '_{i-1} = a_1; \ldots ; a_{i-1}$

$\pattern _{i} = \pattern _{i-1}; a_i \neq \pattern '_{i} = \pattern '_{i-1}; a_{i+1}$

$\pattern _{i+1} = \pattern _{i}; a_{i+1} \neq \pattern '_{i+1} = \pattern '_{i}; a_{i}$

$\pattern '$

$\pattern $

$s \in R^{\pattern _{i-1}}_I$

a_i^m

$m \ge 1$

a_{i+1}^n

$n \ge 1$

s

$res(a_i^m,s)$

$res(a_{i+1}^n,s)$

$R^{\pattern _{i+1}}_I$

$R^{\pattern '_{i+1}}_I$

$R^{\pattern _{i+1}}_I$

$R^\pattern _I$

$R^{\pattern '_{i+1}}_I$

$R^{\pattern '}_I$

$a_i^m;a_{i+1}^n$

$a_{i+1}^n;a_i^m$

s

$\pattern $

$\pattern '$

a_i

a_{i+1}

a

a'

a

a'

$x \asseq e$

a

x

a'

a

a'

$x \asseq e$

a

(i)

x

a'

(ii)

a

a'

x

(iii)

a

a'

x

a

a'

a

a'

a'

a

$\Pi $

$\pattern = a_1; \ldots ; a_k$

$k \ge 2$

$i \in [1,k)$

$\pattern '$

$\pattern $

a_{i+1}

a_i

$\pattern '$

a_i

a_{i+1}

$\pattern $

$\pattern '$

a_i

a_{i+1}

s

$m, n \ge 0$

a_i^m

a_{i+1}^n

s

$res(a_{i+1}^n,res(a_i^m,s))$

$res(a_i^m,res(a_{i+1}^n,s))$

$res(a_i^m,res(a_{i+1}^n,s)) = res(a_{i+1}^n,res(a_i^m,s))$

a_i

a_{i+1}

$\pattern $

$\pattern '$

s

$R^\pattern _s$

$R^{\pattern '}_s$

$s'' = res(a_{i+1}^n,res(a_i^m,s'))$

$s' \in R^{\pattern _{i-1}}_s$

$m, n \ge 0$

s''

$R^{\pattern _{i+1}}_s$

$R^{\pattern '_{i+1}}_s$

$res(a_i^m,res(a_{i+1}^n,s'))$

s''

$\pattern $

$\pattern '$

a_i

a_{i+1}

a_i

a_{i+1}

s

$m, n \ge 1$

$a_i^m;a_{i+1}^n$

$a_{i+1}^n;a_i^m$

s

$\pattern '$

$\pattern $

$\pattern $

$\pattern '$

(i)

a_i

a_{i+1}

(ii)

a_{i+1}

a_i

a_i

a_{i+1}

$a_i^m;a_{i+1}^n$

$a_{i+1}^n;a_i^m$

a

a'

a'

v

e

$v \asseq e$

$\ttt {eff}(a)$

a'

a

a'

p

a'

v

a

(i)

v

a

(ii)

p

v

e

$v \asseq e \in \ttt {eff}(a)$

$a_i^m;a_{i+1}^n$

$a_{i+1}^n;a_i^m$

a_i

a_{i+1}

$\pattern '$

$\pattern $

$\Pi $

$\pattern = a_1; \ldots ; a_k$

$k \ge 2$

$i \in [1,k)$

$\pattern '$

$\pattern $

a_{i+1}

a_i

$\pattern '$

a_i

a_{i+1}

(i)

a_i

a_{i+1}

(ii)

a_{i+1}

a_i

a_i

a_{i+1}

$\pattern '$

$\pattern $

s

$R^{\pattern _{i+1}}_s \subseteq R^{\pattern '_{i+1}}_s$

s

$m, n \ge 0$

$s'' \in R^{\pattern _{i+1}}_s$

$s'' = res(a_{i}^m;a_{i+1}^n,s')$

$s' \in R^{\pattern _{i-1}}_s$

$s'' = res(a_{i+1}^n;a_{i}^m,s')$

$s'' \in R^{\pattern '_{i+1}}_s$

$m =0$

$n=0$

$a_{i}^m;a_{i+1}^n$

$a_{i+1}^n;a_i^m$

$res(a_{i}^m;a_{i+1}^n,s') = res(a_{i+1}^n;a_{i}^m,s')$

$m \ge 1$

a_i

a_{i+1}

a_{i+1}

$res(a_i^m,s)$

$n=0$

$n \ge 1$

a_i

a_{i+1}

a_{i+1}^n

$res(a_i^m,s')$

a_{i+1}^n

s

a_{i+1}

a_i

a_i

$res(a_{i+1}^n,s')$

$res(a_{i+1}^n;a_{i}^m,s')$

$res(a_{i}^m;a_{i+1}^n,s') = res(a_{i+1}^n;a_{i}^m,s')$

a_i

a_{i+1}

$\set {\ttt {lftl}, \ttt {lftr}}, \set {\ttt {rgtl}, \ttt {rgtr}}, \set {\ttt {lre},\ttt {rle}}$

$\pattern $

$\pattern '$

$\pattern $

$\pattern $

$\pattern '$

$\pattern $

$\ttt {conn};\ttt {exch};\ttt {disc}$

$\ttt {conn}$

$\ttt {exch}$

$\ttt {exch}$

$\ttt {disc}$

$\ttt {disc}$

$\ttt {exch}$

$\ttt {conn};\ttt {exch}$

$\ttt {exch};\ttt {conn}$

$x_l = x_r$

$p = \top $

0

$\ttt {conn};\ttt {exch};\ttt {disc}$

$\mu $

$\Pi ^\pattern $

$\pi = a_1^{\mu (a_1)}; a_2^{\mu (a_2)}; \ldots ; a_k^{\mu (a_k)}$

$I = \{p = \bot , x_l = -X_I, x_r = X_I, q_l = Q, q_r = 0, q = 1\}$

X_I, Q

$G= \set {q_l = 0, q_r = Q, x_l = -X_I, x_r = X_I}$

$\pattern _I$

$\textsc {ComputePattern}(\Pi)$

\begin {equation*}\pattern _I = \ttt {lftl}; \ttt {rgtl}; \ttt {lftr}; \ttt {rgtr}; \ttt {rle}; \ttt {lre}; \ttt {conn}; \ttt {exch}; \ttt {disc},\end {equation*}

$\sppp {\Pi }$

\begin {equation*}\begin {array}{ll} \pattern = & \ttt {lftl}1; \ttt {rgtl}1; \ttt {lftr}1; \ttt {rgtr}1; \ttt {rle}1; \ttt {lre}1; \ttt {conn}1; \ttt {exch}1; \ttt {disc}1; \\ & \ttt {lftl}2; \ttt {rgtl}2; \ttt {lftr}2; \ttt {rgtr}2; \ttt {rle}2; \ttt {lre}2; \ttt {conn}2; \ttt {exch}2; \ttt {disc}2. \end {array}\end {equation*}

$\mu $

$\textsc {Solve}(\Pi ^{\pattern })$

\begin {equation*}\begin {array}c \mu (\ttt {lftl}1)= k,\quad \mu (\ttt {rgtl}1)= k+X_I, \\ \mu (\ttt {lftr}1)= X_I,\quad \mu (\ttt {rgtr}1)= 0, \\ \mu (\ttt {rle}1)= m,\quad \mu (\ttt {lre}1)= n, \\ \mu (\ttt {conn}1)= 1,\quad \mu (\ttt {exch}1)= Q, \quad \mu (\ttt {disc}1)= 1, \\ \mu (\ttt {lftl}2)= p+X_I,\quad \mu (\ttt {rgtl}2)= p, \\ \mu (\ttt {lftr}2)= 0,\quad \mu (\ttt {rgtr}2)= X, \\ \mu (\ttt {rle}2)= q,\quad \mu (\ttt {lre}2)= r, \\ \mu (\ttt {conn}2)= \mu (\ttt {exch}2)= \mu (\ttt {disc}2)= 0, \end {array}\end {equation*}

$k, m, n, p, q, r \ge 0$

$m, n, q, r \le 1$

$n=1$

$m=1$

k

$\mu (\ttt {lftl}1)= k$

$k+X$

$\mu (\ttt {rgtl}1)= k+X_I$

$\mu (\ttt {lftr}1)= X_I$

$\mu (\ttt {rgtr}1)= 0$

$\mu (\ttt {rle}1)= m \in [0,1]$

$\mu (\ttt {lre}1)= 1$

$\mu (\ttt {rle}1)= 1$

Q

$\mu (\ttt {conn}1)= 1$

$\mu (\ttt {exch}1)= Q$

$\mu (\ttt {disc}1)= 1$

$p+X_I$

$\mu (\ttt {lftl}2)= p+X_I$

p

$\mu (\ttt {rgtl}2)= p$

$\mu (\ttt {lftr}2)= 0$

$\mu (\ttt {rgtr}2)= X_I$

$\mu (\ttt {rle}2)= q$

$\mu (\ttt {lre}2)= r$

$\ttt {lftl}1$

$\ttt {lre}$

$\ttt {lftl}1$

$k = m = n = p = q = r = 0$

$k = 0$

$p = 0$

a

$(a = 0 \vee a=1)$

$\pattern _I$

$2X_I+Q$

$\pattern $

$\textsc {Solve}(\Pi ^{\pattern })$

$\pattern $

$\pattern _I$

$2X_I+Q$

$\Pi ^{\pattern }$

(i)

$\ttt {lftl}$

$\ttt {exch}$

(ii)

$\ttt {rgtl}$

$\ttt {exch}$

$\sppp {\Pi }$

$\pattern _I$

a

a'

$\pattern _I$

$(a = 0 \vee a' = 0)$

$\pattern _I$

$\pattern $

$\textsc {Solve}(\Pi ^{\pattern })$

1

$x_l = x_r$

2

3

4

5

$\pattern $

$\pattern _I$

$\Pi ^{\pattern }$

(i)

$\ttt {lftl}$

$\ttt {exch}$

(ii)

$\ttt {rgtl}$

$\ttt {exch}$

$\sppp {\Pi }$

$\pattern _I$

$\textsc {Solve}(\Pi ^{\pattern })$

$\Pi ^\pattern $

$\mu $

$\pi $

$\pi $

$\mu $

$\Pi ^\pattern $

$\pattern '$

$\pi '$

$\mu '$

$\Pi ^{\pattern '}$

$\pi $

$\pattern $

$\mu '$

$\Pi ^\pattern $

$\mu $

$\pi $

$\mu '$

$\pi '$

$\pi $

$\pi $

$\pattern $

$\pi $

$\pattern $

$\pi $

$\pattern $

$\pi $

$\pi $

$\pi $

$\pattern $

$\pi $

$\Pi ^\pattern $

$\mu $

$\pi $

$\pattern $

$\sum _{i=1}^k a_i$

$\pi $

$\sum _{i=1}^k a_i$

$a \le \mu (a)$

$a \in A$

$\pi $

$\pattern $

$\pi $

$\sum _{i=1}^k a_i$

(i)

$\mu $

$\Pi ^\pattern $

(ii)

$\Pi ^\pattern \cup \set {a_i = 0 : \mu (a_i) = 0, i \in [1,k]}$

$\set {a_i = 0 : \mu (a_i) > 0, i \in [1,k]}$

$\mu $

a

$\mu (a) = 0$

$\Pi ^\pattern $

$\Pi = \langle V_B, V_N,A, I,G\rangle $

(i)

n

(ii)

$n=0$

n

$\relax R^2\exists $

E

$\Pi $

\begin {equation}\label {eq:enc-tuple} \Pi ^E = \tuple {\mX , \mA , \mI (\mX), \mT (\mX ,\mA ,\mX '), \mG (\mX)},\end {equation}

$\mX $

$V_B \cup V_N$

$\mA $

$\mI (\mX)$

$\mG (\mX)$

G

$v = \top $

$v = \bot $

v

$\neg v$

$\mT (\mX ,\mA ,\mX ')$

$\mX \cup \mA \cup \mX '$

$\mX ' = \{v' \mid v \in \mX \}$

$\mX $

$\mu $

$\mT (\mX ,\mA ,\mX ')$

$\alpha $

(i)

$\alpha $

s

$v \in V_B \cup V_N$

$s(v) = \mu (v)$

(ii)

$\alpha $

s

s'

$v \in V_B \cup V_N$

$s'(v) = \mu (v')$

s

a

A

s'

a

s

$\mu $

$\mT (\mX ,\mA ,\mX ')$

$v \in V_B \cup V_N$

$s(v) = \mu (v)$

$s'(v) = \mu (v')$

$\Pi ^E = \langle \mX , \mA , \mI (\mX), \mT (\mX ,\mA ,\mX '), \mG (\mX)\rangle $

$\Pi $

$n \geq 0$

$n+1$

$\mX _0,\ldots ,\mX _n$

$\mX $

n

$\mA _0,\ldots ,\mA _{n-1}$

$\mA $

$\mI (\mX _0)$

$\mX _0$

$x \in \mX $

$x_0 \in \mX _0$

$\mI (\mX)$

$i = 0,\ldots ,n-1$

$\mT (\mX _i,\mA _i,\mX _{i+1})$

$\mX _i \cup \mA _i \cup \mX _{i+1}$

$x \in \mX $

$a \in \mA $

$x' \in \mX '$

$x_i \in \mX _i$

$a_i \in \mA _i$

$x_{i+1} \in \mX _{i+1}$

$\mT (\mX ,\mA ,\mX ')$

$\mG (\mX _n)$

$\mX _n$

$x \in \mX $

$x_n \in \mX _n$

$\mG (\mX)$

$\Pi ^E$

$\Pi $

n

\begin {equation}\label {eq:enc-sat} \Pi ^E_n = \mI (\mX _0) \wedge \bigwedge _{i=0}^{n-1} \mT (\mX _i,\mA _i,\mX _{i+1}) \wedge \mG (\mX _n).\end {equation}

$\mu $

$\Pi ^E_n$

$\alpha _0; \ldots ; \alpha _{n-1}$

$\alpha _i$

$\mT (\mX _i,\mA _i,\mX _{i+1})$

$\mu $

$\mX _i\cup \mA _i\cup \mX _{i+1}$

$i \in [0,n)$

$\Pi $

n

$\mu $

$\Pi ^E_n$

$\mu $

$\mu $

n

$\mT (\mX ,\mA ,\mX ')$

$\Pi ^E$

$\Pi ^E$

$\mT (\mX ,\mA ,\mX ')$

$\Pi ^E$

$\Pi $

n

$\Pi ^E_n$

$\Pi ^E$

$\Pi ^E_k$

$k < n$

n

n

$\Pi ^R$

$\Pi $

$a \in A$

$k \in \N $

k

a

$\Pi ^R$

$\alpha =0$

$\alpha =1$

$\mT ^R(\mX ,\mA ,\mX ')$

$\Pi ^R$

$\op {pre}^R(A)$

$a \in A$

$v = \bot $

$w = \top $

$\op {pre}(a)$

\begin {equation*}a > 0 \implies (\neg v \wedge w),\end {equation*}

$a \in A$

$\psi \unrhd 0$

$\op {pre}(a)$

\begin {equation*}a > 0 \imp \psi \unrhd 0, \quad a > 1 \imp \psi [a] \unrhd 0,\end {equation*}

$\psi [a]$

$\psi $

x

$x + (a-1) \times \psi _1$

$x \pluseq \psi _1 \in \ttt {eff}(a)$

$\psi _1$

$x \asseq \psi _1 \in \op {eff}(a)$

$\psi \unrhd 0$

a

$\op {eff}^R(A)$

$a \in A$

$v \asseq \bot $

$w \asseq \top $

$x \pluseq \psi $

$y \asseq \psi _1$

$\op {eff}(a)$

\begin {equation*}a > 0 \implies (\neg v' \wedge w' \wedge x' = x + a \times \psi \wedge y' = \psi _1).\end {equation*}

$\op {frame}^R(V_B\cup V_N)$

$v \in V_B$

$w \in V_N$

\begin {align*}&\bigand _{a \colon v \asseq \top \in \op {eff}(a)} a = 0 \land \bigand _{a \colon v \asseq \bot \in \op {eff}(a)} a = 0 \implies v' \equiv v, \\ &\bigand _{a \colon w \asseq \psi \in \op {eff}(a)} a = 0 \implies w' = w.\end {align*}

$\op {mutex}^R(A)$

$(a_1 = 0 \vee a_2 = 0),$

a_1

a_2

a_1

a_2

a_1

$\op {pre}(a_2)$

$\op {eff}(a_2)$

a_1

a_2

$x \asseq x+1$

$a_1 > 0$

$a_2 > 0$

R

$\op {amo}^R(A)$

a

\begin {equation*}(a = 0 \vee a = 1).\end {equation*}

a

$(a = 0 \vee a = 1)$

$\mT ^R(\mX ,\mA ,\mX ')$

(i)

a

(ii)

$a=0$

$a > 0$

$a=1$

$a > 1$

$\neg a$

a

a

$\bot $

$\mT ^R(\mX ,\mA ,\mX ')$

$\mT ^R(\mX ,\mA ,\mX ')$

$(a = 0 \vee a = 1)$

a

$\Pi ^R$

$\Pi ^S$

$\Pi $

$\mT ^S(\mX ,\mA ,\mX ')$

a

$(a = 0 \vee a = 1)$

$\mT ^R(\mX ,\mA ,\mX ')$

$\mu $

$\mT ^R(\mX ,\mA ,\mX ')$

$\mT ^S(\mX ,\mA ,\mX ')$

a

$\mu (a)$

$\Pi $

$\Pi ^R$

$\Pi ^S$

$\exists $

$\relax R^2\exists $

$\op {mutex}(A)$

0

s

> 0

$\relax R^2\exists $

$\relax R^2\exists $

$\relax R^2\exists $

A

$\pattern = a_1;a_2;\ldots ;a_k$

$k \ge 0$

$\relax R^2\exists $

$\pattern $

$\Pi $

$\Pi ^{\ree {}}$

$\Pi ^{\ree {}}$

a

v

a

v^a

v

$\mX $

v^a

v

$\pattern $

a

$\mT ^{\ree {}}(\mX ,\mA ,\mX ')$

$\Pi ^{\ree {}}$

$\op {pre}^{\ree {}}(A)$

$a \in A$

$v = \bot $

$w = \top $

$\psi \unrhd 0$

$\op {pre}(a)$

\begin {equation*}a \imp (\neg v^{\ll ,a} \wedge w ^{\ll ,a} \wedge \psi ^{\ll ,a} \unrhd 0),\end {equation*}

$x \in V_B \cup V_N$

$x^{\ll ,a}$

(i)

x

a

$\repattern $

x

(ii)

x^b

b

x

a

$\repattern $

$\psi ^{\ll ,a}$

$\psi $

$x \in V_N$

$x^{\ll ,a}$

$\op {eff}^{\ree {}}(A)$

$a \in A$

$v \asseq \bot $

$w \asseq \top $

$x \asseq \psi $

$\op {eff}(a)$

\begin {equation*}\begin {array}{ll} a \implies (\neg v^a \wedge w^a \wedge x^a = \psi ^{\ll ,a}), \\ \neg a \implies (v^a \liff v^{\ll ,a} \wedge w^a \liff w^{\ll ,a} \wedge x^a = x^{\ll ,a}). \end {array}\end {equation*}

$\op {frame}^{\ree {}}(V_B\cup V_N)$

$v \in V_B$

$w \in V_N$

\begin {equation*}v' \liff v^{\ll ,g}, \quad w' = w^{\ll ,g},\end {equation*}

g

$\repattern $

$\relax R^2\exists $

$\repattern $

$\mu $

$\mT ^{\ree {}}(\mX ,\mA ,\mX ')$

$\repattern $

a

$\mu (a)=\bot $

$\relax R^2\exists $

$\repattern $

$\mT ^{\ree {}}(\mX ,\mA ,\mX ')$

$\Pi $

$|V_B \cup V_N| \times |A|$

$\relax R^2\exists $

$\repattern $

$\Pi $

$\Pi $

$\pattern $

$\relax R^2\exists $

$\pattern $

$\Pi ^{\ree {}}$

$\pattern $

$\pattern $

$\pattern $

$\mT ^\pattern (\mX ,\mA ^\pattern ,\mX ')$

$\pattern $

$\Pi ^{S,\pattern }$

$\mT (\mX ,\mA ,\mX ')$

$\mT ^\pattern (\mX ,\mA ^\pattern ,\mX ')$

$\Pi ^{S,\pattern }_n$

n

$\pattern $

$\Pi ^{S,\pattern }$

$\Pi $

$\pattern $

$\pattern $

$\Pi ^{S,\pattern }$

$\Pi ^{S,\pattern }$

$\Pi $

$\pattern $

$\Pi ^{S,\pattern }$

$\Pi ^R$

$\Pi ^\ree {}$

$\Pi ^{S,\pattern }$

$\Pi ^R$

$\relax R^2\exists $

$\Pi ^{S,\pattern }$

$\Pi ^R$

$\Pi ^\ree {}$

$\Pi ^S$

E_1

E_2

E_1

E_2

n

$\Pi ^{E_2}_n$

$\Pi ^{E_1}_n$

E_1

E_2

0

E_2

E_1

$\Pi $

$\pattern $

$\pattern $

$\Pi ^{S,\pattern }$

$\Pi ^R$

$\re {}$

$\pattern $

$\Pi ^{\ree {}}$

$\Pi ^R$

$\Pi ^\ree {}$

$\Pi ^S$

$\pattern $

$\mA $

$\mA ^\pattern $

$\Pi ^{S,\pattern }$

$\Pi ^R$

n

$\Pi ^R_n$

$\Pi ^{S,\pattern }_n$

$\mu $

$\mT ^R(\mX ,\mA ,\mX ')$

$\mT ^\pattern (\mX ,\mA ,\mX ')$

$\mu $

$\mT ^R(\mX ,\mA ,\mX ')$

$\alpha $

$\mu $

$\alpha $

$\Pi _\mu = \tuple {V_B,V_N,A,I_\mu ,G_\mu }$

$I_\mu $

$\mu $

$V_B \cup V_N$

$G_\mu = \bigwedge _{v \in V_B: \mu (v') = \top } v \wedge \bigwedge _{v \in V_B: \mu (v') = \bot } \neg v \wedge \bigwedge _{v \in V_N} v = \mu (v')$

$\mu $

$\mX = V_B \cup V_N$

$\mX '$

$\alpha $

$\Pi _\mu $

$\pattern $

$\Pi _\mu $

$\alpha $

$\alpha $

$\pattern $

$a \not \in \alpha $

$\mu (a)=0$

$\Pi ^{S,\pattern }$

$\Pi ^\ree {}$

$\mu $

$\mT ^{\ree {}}(\mX ,\mA ,\mX ')$

$\mT ^\pattern (\mX ,\mA ,\mX ')$

$\mu $

$\mT ^\ree {}(\mX ,\mA ,\mX ')$

$\alpha $

$\mu $

$\alpha $

$\pattern $

$\pattern $

$\mT ^\pattern (\mX ,\mA ,\mX ')$

$\Pi ^R$

$\Pi ^S$

$\Pi ^R$

$\Pi ^S$

$\Pi ^S$

$\Pi ^R$

$\Pi ^S$

$\Pi ^R$

$\Pi ^\ree {}$

$\Pi ^S$

$\mT ^S(\mX ,\mA ,\mX ')$

$a=0$

$\neg a$

$a=1$

a

$\mu $

$\mT ^S(\mX ,\mA ,\mX ')$

$\Pi ^S$

v

a

$\mu (a)=1$

$v \asseq e \in \op {eff}(a)$

$\mu (v') = \mu (e)$

$\mu $

$\mT ^\ree {}(\mX ,\mA ,\mX ')$

$\mu (v^a) = \mu (e)$

$\set {\Pi ^S, \Pi ^R, \Pi ^\ree {}, \Pi ^{S,\pattern }}$

$n_R=5$

$n_S=2X_I+Q+2$

$n_S = n_R$

$X_I = Q = 1$

$\pattern $

$\Pi ^{S,\pattern }_n$

$n = n_{S,\pattern } = 1 < n_R$

$\Pi ^{\ree {}}_n$

$n=n_{\ree {}} =2(X_I-1)+Q$

$n_{\ree {}}=n_{S,\pattern }$

$X_I = Q = 1$

$n_{\ree {}} \le n_R$

$2(X_I-1)+Q \le 5$

$\pattern $

$\Pi ^{S,\pattern }$

$\Pi ^{\ree {}}$

$\Pi ^{S,\pattern }$

$\Pi ^{\ree {}}$

$\Pi ^R$

$\Pi ^S$

$\pattern $

$N=4$

$D=2$

$Q \in \natural _0$

5

8000

3.1

(i)

(ii)

n

n

$\relax \textsc {Patty}_\textsc {A}$

a_1

a_2

a_2

a_1

a_1

a_2

a_2

a_1

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {A}$

$\relax \textsc {Patty}_\textsc {E}$

a_1

a_2

$\relax \textsc {Patty}_\textsc {R}^\mathit {min}$

$\relax \textsc {Patty}_\textsc {R}^\mathit {med}$

$\relax \textsc {Patty}_\textsc {R}^\mathit {max}$

$\relax \textsc {Patty}_\textsc {R}^\mathit {min}$

$\relax \textsc {Patty}_\textsc {R}^\mathit {med}$

$\relax \textsc {Patty}_\textsc {R}^\mathit {max}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {A}$

$\relax \textsc {Patty}_\textsc {R}^\mathit {min}$

$\relax \textsc {Patty}_\textsc {R}^\mathit {med}$

$\relax \textsc {Patty}_\textsc {R}^\mathit {max}$

n

$\pattern _I$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {A}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {A}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {A}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {R}^\mathit {min}$

$\relax \textsc {Patty}_\textsc {R}^\mathit {med}$

$\relax \textsc {Patty}_\textsc {R}^\mathit {max}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {A}$

$\relax \textsc {Patty}_\textsc {R}^\mathit {min}$

$\relax \textsc {Patty}_\textsc {R}^\mathit {med}$

$\relax \textsc {Patty}_\textsc {R}^\mathit {max}$

$\relax \textsc {Patty}_\textsc {R}^\mathit {min}$

$\relax \textsc {Patty}_\textsc {R}^\mathit {min}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {M}$

$\relax \textsc {Patty}_\textsc {E}$

$\sum _{i=1}^k a_i$

$\pattyi $

$\relax \textsc {Patty}_\textsc {E}$

$\mu $

$\sum _{i=1}^k a_i$

$\wedge _{i=1}^k a_i \le \mu (a_i)$

$\pattyc $

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {M}$

$\relax \textsc {Patty}_\textsc {I}$

$\pattern $

$\pi $

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {M}$

$\relax \textsc {Patty}_\textsc {I}$

$\relax \textsc {Patty}_\textsc {C}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {M}$

$\relax \textsc {Patty}_\textsc {I}$

$\relax \textsc {Patty}_\textsc {C}$

$\relax \textsc {Patty}_\textsc {M}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {M}$

$\relax \textsc {Patty}_\textsc {M}$

$\pattern $

$\relax \textsc {Patty}_\textsc {C}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {C}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {I}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {C}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {I}$

$\relax \textsc {Patty}_\textsc {M}$

$\relax \textsc {Patty}_\textsc {C}$

$\relax \textsc {Patty}_\textsc {M}$

$\relax \textsc {Patty}_\textsc {I}$

$\relax \textsc {Patty}_\textsc {C}$

$\relax \textsc {Patty}_\textsc {E}$

$\Pi ^R$

$\relax R^2\exists $

$\relax R^2\exists $

$\pattern $

$\Pi ^{\ree {}}$

$\Pi ^S$

$\relax R^2\exists $

$\exists $

$\relax R^3\exists $

$\relax \textsc {Patty}_\textsc {E}$

$\relax R^2\exists $

$\relax R^3\exists $

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax R^2\exists $

$\relax R^3\exists $

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax R^3\exists $

$\relax R^2\exists $

a_i

$\pattern = a_1;\dots ;a_k$

$\sigma _i(v)$

v

$\mX \cup \set {\var {1}, \var {2}, \ldots , \var {i}}$

$\relax R^2\exists $

$\pattern $

v^{a_i}

$\relax \textsc {Patty}_\textsc {E}$

$\relax R^2\exists $

$\relax R^3\exists $

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax R^2\exists $

$\relax R^2\exists $

$\relax \textsc {Patty}_\textsc {E}$

$\relax R^2\exists $

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {E}$

$_{\textsc {CT}}$

$\relax \textsc {Patty}_\textsc {E}$

$_{\textsc {CT}}$

$\relax \textsc {Patty}_\textsc {E}$

$_{\textsc {CT}}$

$\relax \textsc {Patty}_\textsc {E}$

$_{\textsc {CT}}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {E}$

$\pattern _I$

$n > 1$

n

$\pattern _I$

$n> 1$

$_{\textsc {CT}}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {E}$

$_{\textsc {CT}}$

$\relax \textsc {Patty}_\textsc {E}$

x

y

$_\textsc {E}$

$\relax \textsc {Patty}_\textsc {E}$

$_\textsc {A}$

$_\textsc {R}^{\min }$

$_\textsc {R}^{med}$

$_\textsc {R}^{\max }$

$_\textsc {I}$

$_\textsc {M}$

$_\textsc {C}$

$_\textsc {CT}$

$\relax R^2\exists $

$\relax R^3\exists $

$_{\textsc {CT}}$

$\relax R^2\exists $

$\relax R^3\exists $

$\relax \textsc {Patty}_\textsc {M}$

$\relax \textsc {Patty}_\textsc {I}$

$\relax \textsc {Patty}_\textsc {R}^\mathit {max}$

$\relax \textsc {Patty}_\textsc {M}$

$_{\textsc {CT}}$

$\relax \textsc {Patty}_\textsc {E}$

$\relax \textsc {Patty}_\textsc {A}$

$\relax \textsc {Patty}_\textsc {E}$

$_{\textsc {CT}}$

$_{\textsc {CT}}$

$\relax R^2\exists $

R

R

$\relax R^2\exists $

https://orcid.org/0000-0001-5758-2556
https://orcid.org/0000-0002-9034-2527
mailto:matteo.cardellini@unige.it
mailto:enrico.giunchiglia@unige.it
mailto:marco.maratea@unical.it
https://doi.org/10.1016/j.artint.2026.104482
https://doi.org/10.1016/j.artint.2026.104482
http://creativecommons.org/licenses/by-nc-nd/4.0/

M. Cardellini, E. Giunchiglia and M. Maratea

Independently of the considered type of planning, as long as a solution to a planning problem Π is a sequence of actions; and given
a pattern ≺ defined as a finite sequence of actions, we can compute a formula Π≺ (𝑖) whose models correspond to valid solutions of
Π (correctness of Π≺), and (𝑖𝑖) which is satisfiable if there exists a subsequence of ≺ which is a valid solution (completeness of Π≺), we
can solve the planning problem Π with a simple Symbolic Pattern Planning (SPP) procedure in which we

1. initially fix a pattern ≺,
2. return a solution if Π≺ is satisfiable, and
3. extend the pattern and iterate the second step, otherwise.

The correctness of Π≺ ensures the correctness of the procedure: any returned solution is valid. If the pattern, upon failure, is extended
with a complete pattern, i.e., with a sequence including all the available actions in Π, the procedure is also complete: if Π admits a
valid solution, one will be returned.

To ground the proposal, we focus on numeric planning problems specified in pddl 2.1 level 2 [1], extending our previous work
[2]. Given a pddl numeric planning problem Π and an arbitrary pattern ≺, we first define a Satisfiability Modulo Theory (smt)
[3] formula Π≺ which is both correct and complete, obtaining a correct and complete SPP procedure for pddl numeric planning
problems as a consequence. Then, we consider the pattern selection procedure exploited in [2] based on Asymptotic Relaxed Plan
Graph (arpg) [4], and we improve it to produce patterns which allow the SPP procedure to return a solution in at most the same
number of iterations needed when using the original pattern. Finally, we show that our approach may initially yield low-quality
solutions, which can be enhanced either by directly searching for higher-quality solutions of Π≺ or by refining an initial, possibly
low-quality, solution.

Our SPP approach differs from existing symbolic methods that rely on the planning as satisfiability approach [5]. In these methods,
a solution is found by: (𝑖) constructing a logical model that captures how actions cause a single transition from one state to another,
(𝑖𝑖) defining a bound 𝑛 ≥ 0 and representing trajectories with 𝑛 state transitions by duplicating the single transition model 𝑛 times,
and (𝑖𝑖𝑖) iteratively checking for the existence of a solution, starting with 𝑛 = 0 and incrementing 𝑛 after each failure. Our encoding
can be considered a generalization and an improvement of the state-of-the-art rolled-up encoding Π𝑅 proposed in [6] and of the
relaxed-relaxed-∃ encoding Π𝑅2∃ [7,8], both exploited in the planning as satisfiability approach. In particular, we prove that our
encoding dominates both Π𝑅 and Π𝑅2∃: for any bound 𝑛, it is never the case that the latter two allow to find a valid plan for Π, while
ours does not. The SPP approach has also been extended in a recent work for temporal planning [9], the fragment of planning where
actions may have a duration, are executed concurrently over time, and can affect Boolean and numeric variables at both the start
and end of their execution.

In the search-based planning literature, several planners exploit actions sequences, first searching for a goal state employing the full
sequence, and then resorting back to single actions if unsuccessful. The classical planner yahsp [10] employs “look-ahead plans” (i.e.,
sequences) in the forward search trying to jump to intermediate states closer to the goal. This is similar to the concept of macro-actions
[11]. Patterns, however, allow capturing a larger superset of sequences than macro-actions and “look-ahead plan”, since actions in
any position of the pattern may not be selected in the plan, while the latter approaches only employ the full sequence. Moreover,
in numeric planning, the planner needs also to consider how many times a single action in the sequence has to be consecutively
applied (i.e. rolled) which is standard in the SPP approach. Conclusively, all the above-mentioned approaches are implemented only
for search-based approaches, while our work moves forward the state-of-the-art for satisfiability-based planning. On the modelling
side, Bonassi et al. [12] introduces the concept of “planning with actions constraints” (pac) for pddl3, where one can specify action-
trajectory constraints on the final plan directly in the planning task. Through pac, one could specify, for example, the expected order
of actions in the plan, helping to guide the search for a plan. While this approach is not connected with our ideas of patterns (the plan
could be drastically different from the pattern and our procedure would still be complete), it shows that, in many domains, providing
an intuition on the order of the actions can be very beneficial.

To experimentally validate the results and show the effectiveness of our proposal, we (𝑖) considered the 2 planners, benchmarks,
and settings of the 2023 International Planning Competition (ipc), Agile track [13]; (𝑖𝑖) added 4 other publicly available planning
systems for numeric problems; and (𝑖𝑖𝑖) considered various versions of our system differing either for the pattern selection procedures
and/or for the quality of the returned plan. Overall, our comparative analysis included 7 other planners, 4 of which symbolic and
3 search-based. The experimental results indeed validate our theoretical findings and show that, compared to the other symbolic
planners, our planner Patty has always better performance on every domain, while compared to all the other planners, Patty has
overall remarkably good performances, being the fastest system able to solve most problems on the largest number of domains.

Also based on these results, we believe that our proposal provides a new starting point for symbolic approaches to planning: a
pattern ≺ can be any sequence of actions (even with repetitions) and the pattern needed to effectively solve the problem (e.g., the plan
itself) can be symbolically searched and incrementally defined, aiming to more complex SPP procedures bridging the gap between
symbolic and search-based planning.

Summarizing, the main contributions of the paper are:

1. we present a novel approach for planning in deterministic domains, that we call Symbolic Pattern Planning, and ground our
proposal to numeric planning problems formalized in pddl 2.1 level 2,

2. we consider various pattern selection procedures and mechanisms for improving the quality of the returned solution,
3. we compare our work to existing planning as satisfiability approaches to numeric planning, showing that our encoding can be
considered a generalization of the state-of-the-art rolled-up and 𝑅2∃ encodings, and

Artiϧcial Intelligence 352 (2026) 104482

2

M. Cardellini, E. Giunchiglia and M. Maratea

4. we experimentally validate our ideas and show that our planner Patty outperforms the other available numeric planners on the
benchmarks of the 2023 ipc.

The above contributions are based on and extend our previous work [2]. Differently from this paper, in [2] (𝑖) we did not explicitly
introduce Symbolic Pattern Planning and adopted a planning as satisfiability approach, (𝑖𝑖) we did not study the impact of the
pattern selection procedure and mechanisms for improving the quality of the returned plan, and (𝑖𝑖𝑖) we performed a more limited
experimental analysis.

The paper is structured as follows. After the preliminaries on how to define a numeric planning problem Π in pddl 2.1 and the
main concepts behind Satisfiability Modulo Theories (Section 2), we present our SPP encoding, proving how it allows defining correct
and complete procedures for Π in Section 3. In the same section, we present the outlined pattern selection procedures and address the
plan quality problem, respectively. In Section 4 we frame our encoding in the planning as satisfiability approach, and show that our
encoding provably dominates the rolled-up and 𝑅2∃ encodings. We end the paper with the experimental analysis and the conclusions.
One running example is used throughout the paper to illustrate the formal concepts introduced in the paper.

2. Preliminaries

2.1. Numeric planning in pddl 2.1

As briefly outlined in the introduction, there are many languages for specifying planning problems. Here, we specifically consider
numeric planning problems specified in pddl 2.1, level 2 [1], standardly defined as a tuple Π = ⟨𝑉𝐵 , 𝑉𝑁 , 𝐴, 𝐼, 𝐺⟩ in which 1

1. 𝑉𝐵 and 𝑉𝑁 are finite sets of Boolean and numeric state variables with domains {⊤,⊥} for truth and falsity, and the set ℚ of rational
numbers, respectively;

2. 𝐴 is a finite set of actions. An action 𝑎 is a pair ⟨pre(𝑎), eff(𝑎)⟩ in which
(a) pre(𝑎) is the union of the sets of propositional and numeric preconditions of 𝑎, the former of the form either 𝑣 = ⊤ or 𝑣 = ⊥ and

𝑣 ∈ 𝑉𝐵 , the latter of the form 𝜓 ⊵ 0, with ⊵ ∈ {≥, >,=} and 𝜓 a linear expression over 𝑉𝑁 , i.e., with 𝜓 equal to ∑𝑤∈𝑉𝑁 𝑘𝑤𝑤 + 𝑘,
for some 𝑘𝑤, 𝑘 ∈ ℚ; and

(b) eff(𝑎) is the union of the sets of propositional and numeric effects, the former of the form 𝑣 ∶= ⊤ or 𝑣 ∶= ⊥, the latter of the form
𝑤 ∶= 𝜓 , with 𝑣 ∈ 𝑉𝐵 , 𝑤 ∈ 𝑉𝑁 and 𝜓 a linear expression.

We assume that for each action 𝑎 and variable 𝑣 ∈ 𝑉𝐵 ∪ 𝑉𝑁 , 𝑣 occurs in eff(𝑎) at most once to the left of the operator “∶=”, and
when this happens we say that 𝑣 is assigned by 𝑎. As customary, we write
(a) 𝑣 += 𝜓 as an abbreviation for 𝑣 ∶= 𝑣 + 𝜓 (and similarly for 𝑣 −= 𝜓), and
(b) 𝜓 < 0 as an abbreviation for −𝜓 > 0, and similarly for 𝜓 ≤ 0.

3. 𝐼 is the initial state mapping each variable in 𝑉𝐵 ∪ 𝑉𝑁 to an element in its domain, and 𝐺 is a finite set of goal formulas, each one
being a propositional combination of propositional and numeric conditions. Indeed, the set 𝐺 is interpreted as the conjunction of
the formulas in it.

Let Π = ⟨𝑉𝐵 , 𝑉𝑁 , 𝐴, 𝐼, 𝐺⟩ be a numeric planning problem. A state 𝑠 maps each variable 𝑣 ∈ 𝑉𝐵 ∪ 𝑉𝑁 to a value 𝑠(𝑣) in its domain,
and we assume the domain of each state is extended to linear expressions, Boolean/numeric conditions and their propositional
combinations in the standard way. An action 𝑎 ∈ 𝐴 is executable in a state 𝑠 if 𝑠 satisfies all the preconditions of 𝑎. Given a state 𝑠 and
an executable action 𝑎, the result of executing 𝑎 in 𝑠 is the state 𝑠′ = 𝑟𝑒𝑠(𝑎, 𝑠) such that for each variable 𝑣 ∈ 𝑉𝐵 ∪ 𝑉𝑁 ,

1. 𝑠′(𝑣) = ⊤ if 𝑣 ∶= ⊤ ∈ eff(𝑎), 𝑠′(𝑣) = ⊥ if 𝑣 ∶= ⊥ ∈ eff(𝑎), 𝑠′(𝑣) = 𝑠(𝜓) if (𝑣 ∶= 𝜓) ∈ eff(𝑎), and
2. 𝑠′(𝑣) = 𝑠(𝑣) otherwise.

Consider a finite sequence of actions 𝛼 = 𝑎1;… ; 𝑎𝑛 with 𝑛 > 0. The state sequence 𝑠0;… ; 𝑠𝑛 induced by 𝛼 in 𝑠0 is such that for 𝑖 ∈ [0, 𝑛),
the state 𝑠𝑖+1
1. is undefined if either 𝑎𝑖+1 is not executable in 𝑠𝑖 or 𝑠𝑖 is undefined, and
2. is 𝑟𝑒𝑠(𝑎𝑖+1, 𝑠𝑖), the result of executing 𝑎𝑖+1 in 𝑠𝑖, otherwise.

If 𝑠𝑛 is defined, we say that

1. 𝛼 is executable in 𝑠0,
2. 𝑠𝑛 is the result of executing 𝛼 in 𝑠0, which will be denoted also with 𝑟𝑒𝑠(𝛼, 𝑠0), i.e.,

𝑠𝑛 = 𝑟𝑒𝑠(𝛼, 𝑠0) = 𝑟𝑒𝑠(𝑎𝑛, 𝑟𝑒𝑠(𝑎𝑛−1, 𝑟𝑒𝑠(… 𝑟𝑒𝑠(𝑎1, 𝑠0)…))).

We extend the definition to the case 𝑛 = 0, where 𝛼 reduces to the empty sequence 𝜖. We define that in any state 𝑠, the empty sequence
𝜖 is executable in 𝑠 and 𝑟𝑒𝑠(𝜖, 𝑠) = 𝑠. Finally, if 𝑟𝑒𝑠(𝛼, 𝐼) is defined and satisfies the goal formulas in 𝐺, we say that 𝛼 is a (valid) plan.

1 The PDDL language allows for a lifted representation with variables defined over a finite domain. Here, we consider the grounded version in
which variables are replaced with the elements in the domain in all possible ways.

Artiϧcial Intelligence 352 (2026) 104482

3

M. Cardellini, E. Giunchiglia and M. Maratea

Fig. 1. The initial condition of the motivating example of this paper, as described in Example 1.

Example 1. As depicted in Fig. 1, there are two robots 𝑙 and 𝑟 for left and right, respectively, whose position 𝑥𝑙 and 𝑥𝑟 on an axis
correspond to the integers ≤ 0 and ≥ 0, respectively. The two robots can move to the left or to the right, decreasing or increasing their
position by 1. The two robots carry 𝑞𝑙 and 𝑞𝑟 objects, which they can exchange. However, before exchanging objects, the two robots
must connect, setting a Boolean variable 𝑝 to ⊤, and this is possible only if they have the same position. For the sake of simplicity, we
impose that they exchange only one object at a time, and, thus, a variable 𝑞, which can either be +1 or −1, corresponds to 𝑙 giving
objects to 𝑟 or vice versa, respectively. Once connected, they must disconnect before moving again. This scenario can be modelled in
pddl 2.1 with 𝑉𝐵 = {𝑝}, 𝑉𝑁 = {𝑥𝑙 , 𝑥𝑟, 𝑞𝑙 , 𝑞𝑟, 𝑞} and the following set of actions:

lftr ∶ ⟨{𝑥𝑟 > 0}, {𝑥𝑟 −= 1}⟩, rgtr ∶ ⟨{𝑝 = ⊥}, {𝑥𝑟 += 1}⟩,
lftl ∶ ⟨{𝑝 = ⊥}, {𝑥𝑙 −= 1}⟩, rgtl ∶ ⟨{𝑥𝑙 < 0}, {𝑥𝑙 += 1}⟩,
conn ∶ ⟨{𝑥𝑙 = 𝑥𝑟}, {𝑝 ∶= ⊤}⟩, disc ∶ ⟨{𝑝 = ⊤}, {𝑝 ∶= ⊥}⟩,

exch ∶ ⟨{𝑝 = ⊤, 𝑞𝑙 ≥ 𝑞, 𝑞𝑟 ≥ −𝑞}, {𝑞𝑙 −= 𝑞, 𝑞𝑟 += 𝑞}⟩,
lre ∶ ⟨{}, {𝑞 ∶= 1}⟩, rle ∶ ⟨{}, {𝑞 ∶= −1}⟩.

(1)

The action lftr models the right robot going left, and similarly for rgtr, lftl and rgtl.
Assume the initial state is 𝐼 = {𝑝 ∶= ⊥, 𝑥𝑙 ∶= −𝑋𝐼 , 𝑥𝑟 ∶= 𝑋𝐼 , 𝑞𝑙 ∶= 𝑄, 𝑞𝑟 ∶= 0, 𝑞 ∶= 1}, with 𝑋𝐼 , 𝑄 ∈ ℕ. Assuming 𝐺 = {𝑞𝑙 = 0, 𝑞𝑟 =

𝑄, 𝑥𝑙 = −𝑋𝐼 , 𝑥𝑟 = 𝑋𝐼}, one of the shortest plans is
rgtl𝑋𝐼 ; lftr𝑋𝐼 ; conn; exch𝑄; disc; lftl𝑋𝐼 ; rgtr𝑋𝐼 (2)

where, for each action 𝑎 and 𝑚 ∈ ℕ, 𝑎𝑚 denotes the sequence consisting of the action 𝑎 repeated 𝑚 times (for 𝑚 = 0, 𝑎𝑚 = 𝜖). According
to the plan (2), the robots go to the origin, connect, exchange the 𝑄 items, disconnect, and then go back to their initial positions.

In the rest of the paper, 𝑣,𝑤, 𝑥, 𝑦 denote variables, 𝑎, 𝑏 denote actions and 𝜓 denotes a linear expression, each symbol possibly
decorated with subscripts. Further, we will handle sequences of actions in different ways, depending on whether we intend each to
be

1. a generic sequence of actions, in which case we will use the letter 𝛼, or
2. a plan, in which case we will use the letter 𝜋, or
3. a pattern, in which case we will use the symbol ≺,

each symbol 𝛼, 𝜋, ≺ possibly decorated with subscripts and/or superscripts. For any two sequences of actions 𝛼 and 𝛼′, 𝛼; 𝛼′ denotes
the sequence of actions obtained by concatenating 𝛼′ to the end of 𝛼. Finally, we continue to use standard logical terminology using
terms like satisfiable, contradictory and valid, taking them for granted.

2.2. Satisfiability modulo theories (smt)

The satisfiability problem (sat) is formally defined as follows. Given a propositional formula 𝑓 (𝑥1,… , 𝑥𝑛), composed of 𝑛 propositional
variables, logical connectives (e.g., ∧ for conjunction, ∨ for disjunction, ¬ for negation, and → for implication), and parentheses for
grouping, determine whether there exists a truth assignment or model to the variables 𝑥1,… , 𝑥𝑛 that satisfies 𝑓 . A model is a mapping
𝜇 ∶ {𝑥1, 𝑥2,… , 𝑥𝑛} ↦ {⊤,⊥}, where ⊤ and ⊥ are the symbols for true and false. The goal is to check whether there exists a model 𝜇
such that 𝑓 evaluates to true under 𝜇. Formally, this can be written as:

∃𝜇∶ {𝑥1, 𝑥2,… , 𝑥𝑛} ↦ {⊤,⊥}, s.t. 𝑓 (𝜇(𝑥1),… , 𝜇(𝑥𝑛)) ≡ ⊤,

where ≡ is the symbol for logical equivalence (e.g., ⊤ ∨ ⊥ ≡ ⊤). Satisfiability Modulo Theories (smt) [3] extends the sat problem by
incorporating background theories, enabling reasoning over richer logical structures. In this paper, we will employ smt with the
Quantifier Free Linear Arithmetic theory, which supports reasoning over integers and real numbers under linear constraints. In smt,
one can mix propositional and numeric variables, and thus search for a correct assignment (i.e. a model) to the propositional and
numeric variables that solve the smt formula. This mix of propositional and numeric variables works very naturally in the fragment
of numeric planning.
Example 2. The preconditions and the effects of the exch action of Example 1 can2 be expressed in smt using (𝑖) the propositional
variable 𝑒𝑥𝑐ℎ to denote whether the action exch has been executed or not, (𝑖𝑖) the propositional variable 𝑝 and the numeric variables

2 As we will see in the following sections, there are several ways one could express these formulas, here we show the simplest one [14].

Artiϧcial Intelligence 352 (2026) 104482

4

M. Cardellini, E. Giunchiglia and M. Maratea

𝑞𝑙 , 𝑞𝑟 and 𝑞 to denote the value of the respective variables in 𝑉𝐵 and 𝑉𝑁 before the application of exch, and (𝑖𝑖𝑖) the numeric variables
𝑞′𝑙 , 𝑞

′
𝑟 to represent the value of the respective variables in 𝑉𝑁 after the application of exch.

𝑒𝑥𝑐ℎ → 𝑝 ∧ (𝑞𝑙 ≥ 𝑞) ∧ (𝑞𝑟 ≥ 𝑞),

𝑒𝑥𝑐ℎ → (𝑞′𝑙 = 𝑞𝑙 − 𝑞) ∧ (𝑞′𝑟 = 𝑞𝑟 + 𝑞)

3. Symbolic pattern planning

Consider a numeric planning problem Π = ⟨𝑉𝐵 , 𝑉𝑁 , 𝐴, 𝐼, 𝐺⟩, and a pattern ≺ = 𝑎1; 𝑎2;… ; 𝑎𝑘, defined as an arbitrary finite sequence
of actions in 𝐴 of length 𝑘 ≥ 0. From the definition, the pattern can be empty (in which case it reduces to the empty sequence 𝜖), or it
can contain only some or all of the actions in 𝐴, possibly multiple times, either consecutively or not. Though the pattern can contain
multiple occurrences of a same action 𝑎, such occurrences will be treated as different copies of 𝑎. This allows us to treat each action
occurrence in the pattern as a variable in our encoding, simplifying the notation and the presentation. When necessary, we will write
𝑎1, 𝑎2,… , to mean the first, second, …copy of the action 𝑎 in the pattern.

In this section, we first formally define the SPP procedure outlined in the introduction (Section 3.1), proving its correctness and
completeness assuming the corresponding correctness and completeness of our pattern ≺-encoding Π≺ of Π. The formal definition of
Π≺, together with the proof of its correctness and completeness, is given in Section 3.2. Different procedures to compute patterns and
high-quality plans are presented in Sections 3.3 and 3.4, respectively.

3.1. A simple SPP procedure

The basic idea of Symbolic Pattern Planning (SPP) is to define the value of each state variable in the state resulting from the
execution of a subsequence 𝛼 of the pattern ≺ as a function of both the state in which 𝛼 starts and of the pattern ≺. More in details,
to each action occurrence 𝑎𝑖 in the pattern we associate a distinct numeric action variable whose value denotes the number of times
(≥ 0) 𝑎𝑖 has been executed after 𝑎1;… ; 𝑎𝑖−1. Then, every subsequence 𝛼 of ≺

1. corresponds to one assignment to the action variables in the encoding, and
2. allows expressing the value of each state variable in 𝑠′ as a function of the starting state 𝑠 and of the action variables associated
to the action occurrences in 𝛼 (assuming 𝛼 is executable in a state 𝑠 and that 𝑠′ = 𝑟𝑒𝑠(𝛼, 𝑠)).

Thus, in a SPP encoding, we assume to have the following sets of variables:

1.  , the set of state variables, which includes 𝑉𝐵 ∪ 𝑉𝑁 , used to impose the initial conditions;
2. ≺, consisting of one distinct action variable for each action occurrence in the pattern ≺, used to model which action occurrences
in the pattern are executed; and

3.  ′, the set of resulting state variables, consisting of one variable 𝑥′ for each state variable 𝑥 ∈  , used to model the values of the
state variables in the resulting state and impose the goal conditions.

About the variables in ≺, we take their domain to be the set of non-negative integers, the value of each variable modelling how
many times the action is being consecutively (possibly) executed.

Then, the (SPP) ≺-encoding of Π is the formula
Π≺ = () ∧  ≺( ,≺, ′) ∧ ( ′),

in which

1. () is the initial state formula, a formula on the set  of variables, defined as
⋀

𝑣∶𝐼(𝑣)=⊤
𝑣 ∧

⋀

𝑤∶𝐼(𝑤)=⊥
¬𝑤 ∧

⋀

𝑥,𝑘∶𝐼(𝑥)=𝑘
𝑥 = 𝑘.

2. ( ′) is the goal formula, obtained by making the conjunction of the formulas in 𝐺, once (𝑖) each variable 𝑣 is replaced with 𝑣′,
and (𝑖𝑖) 𝑣′ = ⊤ and 𝑣′ = ⊥ are substituted with 𝑣′ and ¬𝑣′, respectively.

3.  ≺( ,≺, ′) is a (pattern) ≺-symbolic transition relation, a formula on the variables  ∪≺ ∪  ′ providing a definition of each
variable in ( ′) as a function of the variables in  ∪≺. We will thoroughly discuss the ≺-symbolic transition relation in Sec-
tion 3.2.

Indeed, each ≺-encoding of Π has to come with a (pattern) ≺-decoding function, allowing to associate to each model of Π≺ a sequence
of actions in 𝐴, which, for the correctness of the ≺-encoding, has to be a plan for Π. For the completeness of the ≺-encoding, we require
that if there exists a subsequence 𝛼 of ≺ which is a plan of Π, Π≺ is satisfiable.

Then, if for any pattern ≺ we can define a correct and complete ≺-encoding Π≺ of Π, the following simple SPP procedure is
guaranteed to return a plan for Π if one exists:

1. fix an initial pattern ≺𝐼 including every action in 𝐴 and start with ≺ = 𝜖;
2. check whether Π≺ is satisfiable,

Artiϧcial Intelligence 352 (2026) 104482

5

M. Cardellini, E. Giunchiglia and M. Maratea

Algorithm 1 spp algorithm. In spp, the pattern ≺𝐼 is computed once in the initial state and ≺ is ≺𝐼 concatenated 𝑛 times.
1: function spp(Π) /* Π = ⟨𝑉𝐵 , 𝑉𝑁 , 𝐴, 𝐼, 𝐺⟩ */
2: 𝑛← 0; ≺ ← 𝜖;
3: ≺𝐼 ← ComputePattern(Π);
4: while (True) do
5: Π≺ ← () ∧  ≺( ,≺, ′) ∧ ( ′);
6: 𝜇 ← Solve(Π≺);
7: if (𝜇 ≠ 0) then
8: return GetPlan(𝜇, ≺);
9: end if
10: ≺ ← ≺;≺𝐼 ;
11: 𝑛← 𝑛 + 1;
12: end while
13: end function

3. extend ≺ by concatenating ≺𝐼 to it, and iterate the second step upon its failure.

If 𝜋 is a plan of length 𝑛, 𝜋 will be a subsequence of the pattern ≺ generated at the 𝑛th iteration of the above procedure and the
correctness and completeness of the ≺-encoding Π≺ guarantees the correctness and completeness of the procedure. Notice that the
above outlined procedure is guaranteed to terminate at most at the 𝑛th iteration. Indeed, it will terminate as soon as 𝜋 is a subsequence
of the pattern being tested, and even before if the plan 𝜋 contains multiple consecutive occurrences of a same action and our encoding
allows modelling such consecutive executions with a single action variable in ≺𝐼 .

Algorithm 1 shows the pseudocode of the spp procedure, in which:

1. ComputePattern(Π) returns a complete pattern, i.e., a sequence of actions which includes all the actions of the planning task Π.
2. Solve(Π≺) calls a solver which is expected to return a model of Π≺ assuming it is satisfiable, and 0 otherwise.
3. GetPlan(𝜇, ≺) returns the plan corresponding to the model 𝜇 of Π≺, i.e., the sequence of actions

𝑎𝜇(𝑎1)1 ; 𝑎𝜇(𝑎2)2 ;… ; 𝑎𝜇(𝑎𝑘)𝑘 . (3)

For any correct and complete encoding Π≺, spp(Π) is correct (any returned sequence of actions is a plan) and complete (if a plan exists,
spp(Π) will return one). We thus adopt the standard notion of completeness for search procedures (see, e.g., [15]), which requires
the ability to find a solution whenever one exists, and does not require the ability to determine that no solution exists.

Theorem 1. Let Π be a numeric planning problem. If for each pattern ≺ Π≺ is a correct and complete ≺-encoding of Π, then spp(Π) is correct
and complete, i.e.,

1. any returned plan is valid, and
2. a plan is returned when there is a valid one.

Proof. The correctness of spp(Π) follows directly from the hypothesis of the correctness of the ≺-encoding. For the completeness of
spp(Π), let 𝜋 be a plan of length 𝑛. Then, after the 𝑛th iteration of the loop in spp(Π), 𝜋 is a subsequence of ≺ and thus the completeness
of spp(Π) follows from the completeness of the ≺-encoding of Π. ∎

The completeness of spp(Π) essentially relies on the fact that after 𝑛 iterations, the pattern ≺ is 𝑛-complete, i.e., that it contains at
least 𝑛 non-overlapping subsequences in which every action in 𝐴 occurs. It is then clear that the procedure maintains its correctness
and completeness if the spp(Π) procedure is modified in order to, at each iteration,

1. compute a possibly different complete pattern to be concatenated with the previously used pattern: this modification amounts to
remove line 3 and insert the new line of code

≺𝐼 ← ComputePatternI(Π, ≺);

in between lines 9 and 10, in which ComputePatternI(Π, ≺) is assumed to return a complete pattern, or
2. compute an 𝑛-complete pattern to be used in the next iteration, possibly entirely different from the previously used pattern: this
modification amounts to removing line 3 and replacing line 10 with the line of code

≺← ComputePatternN(Π, ≺);

in which ComputePatternN(Π, ≺) is assumed to return a 𝑛-complete pattern.

It is clear that spp(Π), as in Algorithm 1, can be considered a special case of the spp(Π) procedure as modified in the first of the above
two items, which in turn can be considered a special case of the spp(Π) procedure as modified in the second of the above two items.

Artiϧcial Intelligence 352 (2026) 104482

6

M. Cardellini, E. Giunchiglia and M. Maratea

3.2. A correct and complete SPP encoding for numeric planning problems

We now formally define a correct and complete ≺-encoding Π≺ of Π, which amounts to define the ≺-symbolic transition relation
 ≺( ,≺, ′). A pattern is elementary if the same action doesn’t appear multiple times in the pattern. It is complete if all the actions
in 𝐴 appear in the pattern.

In the ≺-encoding Π≺ of Π,
1.  = 𝑉𝐵 ∪ 𝑉𝑁 , and
2. ≺ contains a distinct action variable with domain in ℕ for each action occurrence in ≺ (thus |≺

| = 𝑘).

As already said, in the following, for each 𝑖 ∈ [1, 𝑘], we will use 𝑎𝑖 to denote both the 𝑖th action in ≺ and the corresponding action
variable in ≺.

Assume the pattern ≺ is not empty and consider an arbitrary action 𝑎 in it (its position is irrelevant at this time).
Intuitively, as proposed by [6], the value assumed by the action variable 𝑎 ∈ ≺ represents the number ≥ 0 of times the action has

to be consecutively executed. Of course, the possibility to have 𝑎 > 1 is an optimization allowing the pattern ≺ to model transitions in
which actions are also consecutively executed more than once: restricting 𝑎 in {0, 1} neither affects the correctness nor the complete-
ness of the spp(Π) procedure, but it may affect performance. Though it might be desirable to allow 𝑎 assuming any possible value, it
is not always possible to allow 𝑎 > 1, e.g., because the action 𝑎 cannot be executed more than once, or it is not easy to compute the
effects of executing 𝑎 more than once, or it is not useful to execute 𝑎 more than once. To define when it is possible to allow 𝑎 > 1,
each effect 𝑣 ∶= 𝑒 of the action 𝑎 is categorized as
1. a linear increment, if 𝑒 = 𝑣 + 𝜓 with 𝜓 a linear expression not containing any of the variables assigned by 𝑎, as for the effects of
the action exch and lftr in (1), or as

2. a general assignment, if it is not a linear increment. General assignments are further divided into
(a) simple assignments, when 𝑒 does not contain any of the variables assigned by 𝑎, as in the effects of the actions conn, disc, lre

and rle in (1), and
(b) self-interfering assignments (e.g., eff(𝑎) = {𝑥 ∶= 𝑦, 𝑦 ∶= 𝑥}), otherwise.

Then, the action 𝑎 is eligible for rolling if 3

1. 𝑣 = ⊥ ∈ pre(𝑎) (resp. 𝑣 = ⊤ ∈ pre(𝑎)) implies 𝑣 ∶= ⊤ ∉ eff(𝑎) (resp. 𝑣 ∶= ⊥ ∉ eff(𝑎)), and
2. 𝑎 does not contain a self-interfering assignment, and
3. 𝑎 contains a linear increment.
Whenever an action 𝑎 is eligible for rolling, it is possible to determine both the conditions under which it is possible to execute 𝑎 for
𝑚 times in a state 𝑠, and the conditions on the resulting state.
Theorem 2. [Scala et al., (2016)] Let Π be a numeric planning problem. Let 𝑎 be an action which is eligible for rolling. For any two states
𝑠 and 𝑠′ and integer 𝑚 > 0,

𝑠′ = 𝑟𝑒𝑠(𝑎𝑚, 𝑠)

if and only if
1. for each numeric precondition 𝜓 ⊵ 0 in pre(𝑎),

𝑠(𝜓) ⊵ 0 and 𝑠(𝜓[𝑚]) ⊵ 0, (4)

where 𝜓[𝑚] is the linear expression obtained from 𝜓 by substituting each variable 𝑥 with
(a) 𝑥 + (𝑚 − 1) × 𝜓 ′, whenever 𝑥 += 𝜓 ′ ∈ eff(𝑎) is a linear increment,
(b) 𝜓 ′, whenever 𝑥 ∶= 𝜓 ′ ∈ eff(𝑎) is a simple assignment.

2. for each variable 𝑣,
(a) 𝑠′(𝑣) = ⊤ (resp. 𝑠′(𝑣) = ⊥) whenever 𝑣 ∶= ⊤ ∈ eff(𝑎) (resp. 𝑣 ∶= ⊥ ∈ eff(𝑎));
(b) 𝑠′(𝑣) = 𝑠(𝑣) + 𝑚 × 𝑠(𝜓) whenever 𝑣 += 𝜓 ∈ eff(𝑎);
(c) 𝑠′(𝑣) = 𝑠(𝜓) whenever 𝑣 ∶= 𝜓 ∈ eff(𝑎) is a simple assignment;
(d) 𝑠′(𝑣) = 𝑠(𝑣), otherwise.

The conditions in (4) ensure that 𝜓 ⊵ 0 holds in the states in which the first and the last execution of 𝑎 happens. The satisfaction of
these two conditions ensure that each precondition 𝜓 ⊵ 0 of 𝑎 is satisfied also in the intermediate states 𝑠 in between the first and the
last execution of 𝑎. This is a consequence of the fact, proved in [6], that the function 𝜓[𝑎] is monotonic in 𝑎 if the action is eligible
for rolling.

Let ≺ = 𝑎1;… ; 𝑎𝑘. Now, for each 𝑖 ∈ [0, 𝑘], we define the expression 𝜎𝑖(𝑣), representing the value of each variable 𝑣 ∈ 𝑉𝐵 ∪ 𝑉𝑁 after
the execution of ≺𝑖, as a function of the action variables in  ∪ {𝑎1, 𝑎2,… , 𝑎𝑖}. Clearly, if 𝑖 = 0, 𝜎0(𝑣) = 𝑣 while, if 𝑖 ∈ [1, 𝑘], 𝜎𝑖(𝑣) is
recursively defined as follows4:

3 Here, as in [2], we consider just the cases 𝛼 = 0 and 𝛼 = 1 of Theorem 1 in [6], which (quoting) “cover a very general class of dynamics, where
rates of change are described by linear or constant equations”.
4 Note that each 𝜎𝑖 is not implemented as a auxialiary variable, but is an expression over  ∪ {𝑎1, 𝑎2,… , 𝑎𝑖}.

Artiϧcial Intelligence 352 (2026) 104482

7

M. Cardellini, E. Giunchiglia and M. Maratea

1. if 𝑣 is not assigned by 𝑎𝑖, the value of 𝑣 does not change, no matter whether 𝑎𝑖 is executed or not, and thus
𝜎𝑖(𝑣) = 𝜎𝑖−1(𝑣);

2. if 𝑣 ∶= ⊤ ∈ eff(𝑎𝑖), 𝑣 will get the value ⊤ if 𝑎𝑖 is executed and will keep the same value otherwise, and thus
𝜎𝑖(𝑣) = (𝜎𝑖−1(𝑣) ∨ 𝑎𝑖 > 0);

3. if 𝑣 ∶= ⊥ ∈ eff(𝑎𝑖), 𝑣 will get the value ⊥ if 𝑎𝑖 is executed and will keep the same value otherwise, and thus
𝜎𝑖(𝑣) = (𝜎𝑖−1(𝑣) ∧ 𝑎𝑖 = 0);

4. if 𝑣 += 𝜓 ∈ eff(𝑎𝑖) is a linear increment, the value of 𝑣 will be incremented by the value of 𝜓 multiplied by the number of times
𝑎𝑖 is consecutively executed, and thus

𝜎𝑖(𝑣) = 𝜎𝑖−1(𝑣) + 𝑎𝑖 × 𝜎𝑖−1(𝜓),

where 𝜎𝑖−1(𝜓) is the expression obtained by substituting each variable 𝑣 ∈ 𝑉𝑁 in 𝜓 with 𝜎𝑖−1(𝑣);
5. if 𝑣 ∶= 𝜓 ∈ eff(𝑎𝑖) is a general assignment, suitable “at-most-once” axioms will restrict 𝑎𝑖 to range in {0, 1} if action 𝑎𝑖 is not eligible
for rolling, and then executing 𝑎𝑖 will cause 𝑣 getting the value 𝜎𝑖−1(𝜓), while 𝑣 will keep the same value if 𝑎𝑖 is not executed, and
thus 5

𝜎𝑖(𝑣) = ite(𝑎𝑖 > 0, 𝜎𝑖−1(𝜓), 𝜎𝑖−1(𝑣)),

where ite(𝑎𝑖 > 0, 𝜎𝑖−1(𝜓), 𝜎𝑖−1(𝑣)) returns 𝜎𝑖−1(𝜓) or 𝜎𝑖−1(𝑣) depending on whether 𝑎𝑖 > 0 is true or not, and belongs to the standard
functions defined in smtlib [16].

Example 3. Consider (1), and assume ≺ is
lre; rle; lftr; rgtl; conn; exch; disc; rgtr; lftl. (5)

The pattern contains all the 9 actions in 𝐴 exactly once, and the value 𝜎(𝑣) of each variable 𝑣 after executing ≺, each action of ≥ 0
times, is

1. for the Boolean variable 𝑝,
𝜎(𝑝) = (𝑝 ∨ conn > 0) ∧ disc = 0,

2. and, for the numeric variables in 𝑉𝑁 = {𝑥𝑙 , 𝑥𝑟, 𝑞𝑙 , 𝑞𝑟, 𝑞},

𝜎(𝑥𝑙) = 𝑥𝑙 + rgtl − lftl,

𝜎(𝑥𝑟) = 𝑥𝑟 − lftr + rgtr,

𝜎(𝑞𝑙) = 𝑞𝑙 − exch × 𝑞rle,

𝜎(𝑞𝑟) = 𝑞𝑟 + exch × 𝑞rle,

𝜎(𝑞) = 𝑞rle.

in which 𝑞rle abbreviates the term ite(𝑟𝑙𝑒 > 0,−1, ite(𝑙𝑟𝑒 > 0, 1, 𝑞)).

Notice that the above definition of 𝜎(𝑣) for 𝑣 ∈ 𝑉𝐵 ∪ 𝑉𝑁 depends not only on which are the actions in the pattern, but also on their
position in the pattern. For instance, if ≺ is

lftr; rgtl; conn; exch; disc; rgtr; lftl; lre; rle,

i.e., if we assume we set the value of the state variable 𝑞 at the end of the pattern, then the value of 𝜎(𝑣) remains the same as the one
above defined for all the variables except for 𝑞𝑙 and 𝑞𝑟, about which we now get:

𝜎(𝑞𝑙) = 𝑞𝑙 − exch × 𝑞,
𝜎(𝑞𝑟) = 𝑞𝑟 + exch × 𝑞,

modelling that now the two robots exchange items at the initially fixed rate 𝑞.
If we omit the actions lre and rle from the pattern, and thus if we assume ≺ is

lftr; rgtl; conn; exch; disc; rgtr; lftl

we will get the same 𝜎(𝑣) as the one we just defined for all the variables except for 𝑞, about which we now get
𝜎(𝑞) = 𝑞,

reflecting the fact that there is no action in the pattern modifying the initial value of the state variable 𝑞.

5 The definition of 𝜎𝑖(𝑣) that we give here for this case is different from the one we used in [2], which does not rely on ITE terms and requires the
introduction of one additional variable.

Artiϧcial Intelligence 352 (2026) 104482

8

M. Cardellini, E. Giunchiglia and M. Maratea

If ≺ is
lre1; rle1; lftr; rgtl; conn; exch; disc; rgtr; lftl; lre2; rle2,

i.e., if we assume we set the value of the state variable 𝑞 both at the beginning and also at the end of the pattern, then the value of
𝜎(𝑣) remains the same for the Boolean variable 𝑝 and the numeric variables 𝑥𝑙 and 𝑥𝑟, while the others become:

𝜎(𝑞𝑙) = 𝑞𝑙 − exch × 𝑞rle1,
𝜎(𝑞𝑟) = 𝑞𝑟 + exch × 𝑞rle1,
𝜎(𝑞) = 𝑞rle2.

in which 𝑞rle1 abbreviates the term ite(𝑟𝑙𝑒1 > 0,−1, ite(𝑙𝑟𝑒1 > 0, 1, 𝑞)), and 𝑞rle2 abbreviates the term ite(𝑟𝑙𝑒2 > 0,−1, ite(𝑙𝑟𝑒2 >
0, 1, 𝑞rle1)).

The ≺-symbolic transition relation  ≺( ,≺, ′) of Π≺ is simply the conjunction of the formulas enforcing

1. at-most-once axioms for the actions not eligible for rolling; and
2. preconditions axioms enforcing that executing an action is possible only in states in which its preconditions are satisfied; and
3. an explicit definition of each variable 𝑣′ ∈  ′ as a function of the variables in  ∪≺, i.e., of the starting state and the variables
corresponding to the action occurrences in the pattern.

Formally,  ≺( ,≺, ′) is the conjunction of

1. amo≺(𝐴) which contains, for each 𝑖 ∈ [1, 𝑘],

𝑎𝑖 = 0 ∨ 𝑎𝑖 = 1,

whenever the action 𝑎𝑖 is not eligible for rolling. 6
2. pre≺(𝐴), which contains, for each 𝑖 ∈ [1, 𝑘], and for each 𝑣 = ⊥ and for each 𝑤 = ⊤ in pre(𝑎𝑖),

𝑎𝑖 > 0 → ¬𝜎𝑖−1(𝑣), 𝑎𝑖 > 0 → 𝜎𝑖−1(𝑤),

and, for each numeric precondition 𝜓 ⊵ 0 in pre(𝑎𝑖) we ensure the conditions in (4),
𝑎𝑖 > 0 → 𝜎𝑖−1(𝜓) ⊵ 0, 𝑎𝑖 > 1 → 𝜎𝑖−𝑖(𝜓[𝑎𝑖]) ⊵ 0.

3. f rame≺(𝑉𝐵 ∪ 𝑉𝑁), consisting of, for each variable 𝑣 ∈ 𝑉𝐵 and 𝑥 ∈ 𝑉𝑁 ,

𝑣′ ↔ 𝜎𝑘(𝑣), 𝑥′ = 𝜎𝑘(𝑥).

Example 4. Assume the pattern ≺ is (5), i.e.,
lre; rle; lftr; rgtl; conn; exch; disc; rgtr; lftl.

In this case,

1. amo≺(𝐴) is
lre = 0 ∨ lre = 1, rle = 0 ∨ rle = 1,
conn = 0 ∨ conn = 1, disc = 0 ∨ disc = 1.

2. pre≺(𝐴) is equivalent to
lftr > 0 → 𝑥𝑟 > 0, lftr > 1 → 𝑥𝑟 − (lftr − 1) > 0,
rgtr > 0 → ¬((𝑝 ∨ conn > 0) ∧ disc = 0),
lftl > 0 → ¬((𝑝 ∨ conn > 0) ∧ disc = 0),
rgtl > 0 → 𝑥𝑙 < 0, rgtl > 1 → 𝑥𝑙 + (rgtl − 1) < 0,
conn > 0 → 𝑥𝑙 + rgtl = 𝑥𝑟 − lftr,
disc > 0 → (𝑝 ∨ conn > 0),

exch > 0 → ((𝑝 ∨ conn > 0) ∧ 𝑞𝑙 ≥ 𝑞rle ∧ 𝑞𝑟 ≥ −𝑞rle),
exch > 1 → (𝑞𝑙 ≥ 𝑞rle − (exch − 1) × 𝑞rle),
exch > 1 → (𝑞𝑟 ≥ −𝑞rle + (exch − 1) × 𝑞rle).

in which 𝑞rle abbreviates the term ite(𝑟𝑙𝑒 > 0,−1, ite(𝑙𝑟𝑒 > 0, 1, 𝑞)) as before.

6 If the action is not eligible for rolling then 𝑎 can be defined as a Boolean variable. However, this will require to change the recursive definition
of 𝜎𝑖(𝑣). In particular, if 𝑣 += 𝜓 ∈ eff(𝑎𝑖) the new definition will be:

𝜎𝑖(𝑣) = ite(𝑎𝑖, 𝜎𝑖−1(𝑣) + 𝜎𝑖−1(𝜓), 𝜎𝑖−1(𝑣)),

and similarly for the other cases.

Artiϧcial Intelligence 352 (2026) 104482

9

M. Cardellini, E. Giunchiglia and M. Maratea

3. f rame≺(𝑉𝐵 ∪ 𝑉𝑁) is
𝑝′ ↔ ((𝑝 ∨ conn > 0) ∧ disc = 0),
𝑥′𝑙 = 𝑥𝑙 + rgtl − lftl, 𝑥′𝑟 = 𝑥𝑟 − lftr + rgtr,
𝑞′𝑙 = 𝑞𝑙 − exch × 𝑞rle, 𝑞′𝑟 = 𝑞𝑟 + exch × 𝑞𝑟𝑙𝑒,
𝑞′ = 𝑞rle.

Π≺ is the conjunction of the above formulas together with the formulas encoding the initial and goal states. Π≺ is satisfiable, and the
plan (2) corresponds to a model of Π≺.
Indeed, if Π is the domain in the example and ComputePattern(Π) in the spp(Π) procedure in Fig. 1 returns the complete pattern
(5), spp(Π) will return a plan when 𝑛 = 1, i.e., at the first iteration in which ≺ is not empty.
Theorem 3. Let Π be a numeric planning problem. Let ≺ be a pattern. The SPP ≺-encoding Π≺ is correct and complete.
Proof. Let ≺ = 𝑎1; 𝑎2;… ; 𝑎𝑘, 𝑘 ≥ 0. For Π = ⟨𝑉𝐵 , 𝑉𝑁 , 𝐴, 𝐼, 𝐺⟩, let Π∅ be the numeric planning problem Π without goals, i.e., Π∅ =
⟨𝑉𝐵 , 𝑉𝑁 , 𝐴, 𝐼, ∅⟩. Clearly, any executable sequence of actions (even the empty one) is a plan for Π∅.

Correctness. We first prove the correctness of the encoding considering the planning problem Π∅. Specifically, we first prove that
if 𝜇 is a model of Π≺∅ then 𝜋 = 𝑎𝜇(𝑎1)1 ; 𝑎𝜇(𝑎2)2 ;… ; 𝑎𝜇(𝑎𝑘)𝑘 is a plan of Π∅ and 𝑠𝑘 = 𝑟𝑒𝑠(𝜋, 𝐼) is such that, for each state variable 𝑣 ∈ 𝑉𝐵 ∪ 𝑉𝑁 ,
𝑠𝑘(𝑣) = 𝜇(𝜎𝑘(𝑣)) = 𝜇(𝑣′), i.e., the value of 𝑣 in 𝑠𝑘 coincides with (𝑖) the value of 𝑣 computed via the expression 𝜎𝑘 at the end of the
pattern and (𝑖𝑖) with the value of 𝑣′ ∈  ′. The proof is by induction on the length 𝑘 of ≺. If 𝑘 = 0, then ≺ = 𝜋 = 𝜖 and the thesis follows
since the empty sequence of actions is a valid plan, 𝑠𝑘 = 𝐼 and Π≺∅ reduces to

Π≺∅ = () ∧
⋀

𝑣∈𝑉𝐵

𝑣 ≡ 𝑣′ ∧
⋀

𝑣∈𝑉𝑁

𝑣 = 𝑣′.

If 𝑘 = 𝑖 + 1 > 0, let 𝜋𝑖 = 𝑎𝜇(𝑎1)1 ; 𝑎𝜇(𝑎2)2 ;… ; 𝑎𝜇(𝑎𝑖)𝑖 and 𝜋 = 𝜋𝑖; 𝑎
𝜇(𝑎𝑘)
𝑘 . By induction hypothesis, 𝑠𝑖 = 𝑟𝑒𝑠(𝜋𝑖, 𝐼) is defined and for each state

variable 𝑣 ∈ 𝑉𝐵 ∪ 𝑉𝑁 , 𝑠𝑖(𝑣) = 𝜇(𝜎𝑖(𝑣)). Then 𝑠𝑘, equal to 𝑟𝑒𝑠(𝑎𝜇(𝑎𝑘)𝑘 , 𝑠𝑖), is defined, and for each state variable 𝑣 ∈ 𝑉𝐵 ∪ 𝑉𝑁 , 𝑠𝑘(𝑣) =
𝜇(𝜎𝑘(𝑣)) = 𝜇(𝑣′), holds for every possible value of 𝜇(𝑎𝑘). When 𝜇(𝑎𝑘) = 0, 𝑎𝜇(𝑎𝑘)𝑘 = 𝜖, 𝑠𝑘 = 𝑠𝑖 and for each state variable 𝑣 ∈ 𝑉𝐵 ∪ 𝑉𝑁 ,
𝜇(𝑣′) = 𝜇(𝜎𝑘(𝑣)) = 𝜇(𝜎𝑖(𝑣)). When 𝜇(𝑎𝑘) > 0, the thesis follows from Theorem 2. Now consider a model 𝜇 of Π≺. Then, 𝜇 is also a
model of Π≺∅ and 𝜋 is a plan of Π∅. The fact that the state 𝑠𝑘 = 𝑟𝑒𝑠(𝜋, 𝐼) satisfies 𝐺 follows from the fact that for each state variable
𝑣 ∈ 𝑉𝐵 ∪ 𝑉𝑁 , 𝑠𝑘(𝑣) = 𝜇(𝜎𝑘(𝑣)) = 𝜇(𝑣′) and 𝜇 satisfies ( ′).

Completeness. Given the definition of completeness for the ≺-encoding, we have to prove that if Π admits a plan which is a
subsequence of ≺, then Π≺ is satisfiable. Let 𝜋 be a valid plan of length 𝑛 ≤ 𝑘 of Π which is also a subsequence of ≺. Let 𝑠𝑛 be the last
state induced by 𝜋. Then, if we consider 𝜋 as a pattern and build Π𝜋 , the assignment 𝜇 extending 𝐼 , assigning all the actions in 𝜋 to
1 and such that, for each variable 𝑣′ ∈  ′, 𝜇(𝑣′) = 𝑠𝑛(𝑣) is a model of Π𝜋 . The proof that 𝜇 is a valid model of Π𝜋 is by induction on
𝑛 and analogous to the proof done for correctness, by first considering Π∅. Then, going back to the proof of completeness of Π≺, we
conclude showing that Π𝜋 is equivalent to the formula obtained from Π≺ when substituting each action variable not in 𝜋 with 0, and
hence Π≺ is satisfiable. ∎

Due to Theorems 1 and 3, for any numeric planning problem Π, the spp(Π) procedure in Fig. 1 is correct and complete.

3.3. Pattern computation

Consider a numeric planning problem Π = ⟨𝑉𝐵 , 𝑉𝑁 , 𝐴, 𝐼, 𝐺⟩. Though the spp(Π) procedure in Algorithm 1 is guaranteed to be
correct and complete for any complete pattern ≺𝐼 returned by ComputePattern(Π), it is clear that its performance may critically
depend on ≺𝐼 , as shown also by our running example.
Example 5. As already seen, if the pattern ≺ is (5), then Π≺ is satisfiable. Thus, if ≺𝐼 is (5) then spp(Π) returns a plan after 𝑛 = 1
concatenations of ≺𝐼 . On the other hand, if ≺𝐼 is the sequence obtained reversing (5), i.e.,

lftl; rgtr; disc; exch; conn; rgtl; lftr; rle; lre (6)

then spp(Π) returns a plan after 𝑛 = 5 concatenations of ≺𝐼 .
Even considering the spp(Π) procedure in Algorithm 1 modified to compute a (possibly) brand new 𝑛-complete pattern at each

iteration (as discussed at the end of Section 3.1), the problem is how to easily (i.e., in polynomial time) compute a “good” pattern.
To address this problem, consider a pattern ≺ = 𝑎1;… ; 𝑎𝑘, 𝑘 ≥ 0. Our desideratum is to compute a pattern ≺′ such that

1. for each action 𝑎 ∈ 𝐴, the number of occurrences of 𝑎 in ≺′ is at most equal to the number of occurrences of 𝑎 in ≺, and
2. ≺′ dominates ≺, i.e., such that Π≺ satisfiability implies Π≺′ satisfiability.

The first requirement is necessary, as it is easy to satisfy the second one by simply adding action occurrences to ≺. Indeed, by adding
an action to ≺, we obtain a new pattern that strongly dominates the previous one. A pattern ≺′ strongly dominates ≺ if and only if for
any planning problem Π′ possibly differing from Π only in the initial state 𝐼 and goal 𝐺, Π′≺ satisfiability implies Π′≺′ satisfiability.
Of course, if ≺′ strongly dominates ≺, then ≺′ dominates ≺.

Artiϧcial Intelligence 352 (2026) 104482

10

M. Cardellini, E. Giunchiglia and M. Maratea

Theorem 4. Let Π be a numeric planning problem. Let ≺ be a pattern. Let 𝑎 be an action in Π. Let ≺ + 𝑎 be a pattern obtained inserting 𝑎 in
≺. ≺ + 𝑎 strongly dominates ≺.

Proof. Let ≺ = 𝑎1;… ; 𝑎𝑘 and ≺ + 𝑎 = 𝑎1;… ; 𝑎𝑖; 𝑎; 𝑎𝑖+1;… ; 𝑎𝑘, 0 ≤ 𝑖 ≤ 𝑘. ≺ + 𝑎 strongly dominates ≺, since each model 𝜇 of  ≺ can be
extended to a model 𝜇′ of  ≺+𝑎 with 𝜇′(𝑎) = 0. ∎

According to the theorem, removing actions from the pattern ≺ produces a new pattern ≺′ which, at least theoretically, will not
allow us to solve more problems: the best we can get is that ≺ and ≺′ are equivalent or strongly equivalent. A pattern ≺′ is equivalent
(resp. strongly equivalent) to ≺ if and only if ≺′ dominates (resp. strongly dominates) ≺ and vice versa. However, on the practical side,
a pattern with fewer actions produces formulas with fewer variables which are likely to be easier to solve.

For the above reasons, we first concentrate on determining sufficient conditions allowing to improve a pattern by removing action
occurrences from it. Then, we present conditions allowing to prove when swapping two actions leads to a new pattern which (strongly)
dominates the original one. Finally, we show how we can effectively build a pattern based on the previously presented findings.

In the following, for each 𝑖 ∈ [0, 𝑘] and state 𝑠, we inductively define the set 𝑅≺𝑖𝑠 of states reachable with ≺𝑖 starting from the state 𝑠,
as

1. 𝑅𝜖𝑠 = {𝑠} for 𝑖 = 0, and
2. for 𝑖 > 0, as the smallest set containing the states 𝑟𝑒𝑠(𝑎𝑚𝑖 , 𝑠) whenever 𝑠 ∈ 𝑅≺𝑖−1𝑠 , 𝑎𝑚𝑖 is executable in 𝑠, 𝑚 ≥ 0 and also 𝑚 ≤ 1 if 𝑎 is
not eligible for rolling.

Intuitively, 𝑅≺𝑖𝑠 represents the set of states which are the result of executing each action in ≺𝑖, for 0, 1 or more times (if eligible for
rolling), starting from 𝑠 used as initial state. From the definition, for 𝑖 > 0, it follows that

1. for any state 𝑠, 𝑅≺𝑖−1𝑠 ⊆ 𝑅≺𝑖𝑠 ,
2. for any pattern ≺′, if 𝑅≺𝐼 ⊆ 𝑅≺

′

𝐼 then ≺′ dominates ≺, and
3. for any pattern ≺′ we have that 𝑅≺𝑠 ⊆ 𝑅≺

′
𝑠 for any state 𝑠 if and only if ≺′ strongly dominates ≺.

3.3.1. Improving patterns by removing action occurrences
Consider an action occurrence 𝑎𝑖 in the pattern ≺ and the problem of determining when 𝑎𝑖 can be removed from ≺, still obtaining

an equivalent pattern. In general, this is possible if 𝑅≺𝑖−1𝐼 = 𝑅≺𝑖𝐼 , i.e., when the execution of 𝑎𝑚𝑖 in any state in 𝑅
≺𝑖−1
𝐼 does not lead to

any new state, for any 𝑚 ≥ 0. Indeed, checking whether this condition holds is far from being trivial, since in general it amounts to
check the unsatisfiability of the formula

() ∧ ∃𝑎1 …∃𝑎𝑖. ≺𝑖 ( ,≺𝑖 , ′) ∧ ¬∃𝑎1 …∃𝑎𝑖−1. ≺𝑖−1 ( ,≺𝑖−1 , ′).

Apart from the cases in which we can easily check that executing 𝑎𝑖 does not affect the state in which it is executed (as, e.g., in the
case of the example where lre is the first action in the pattern (5) and 𝑞 is already equal to 1 in 𝐼), we can simplify the pattern by
removing 𝑎𝑖

1. when 𝑎𝑖+1 is another occurrence of the action 𝑎𝑖 and 𝑎𝑖 is eligible for rolling, or
2. when 𝑎𝑖 is not executable in any state in 𝑅≺𝑖−1𝐼 (assuming it can be easily computed).

Theorem 5. Let Π be a numeric planning problem. Let ≺ = 𝑎1;… ; 𝑎𝑘 be a pattern, 𝑘 ≥ 0. Let 𝑖 ∈ [1, 𝑘] and assume that

1. 𝑖 < 𝑘, 𝑎𝑖 = 𝑎𝑖+1 and 𝑎𝑖 is eligible for rolling, or
2. 𝑎𝑖 is not executable in any state of 𝑅≺𝑖−1𝐼 .

Then, we can remove 𝑎𝑖 from ≺ and obtain an equivalent pattern.

Proof. We prove the two statements separately.

1. If 𝑎𝑖 is eligible for rolling, given a model 𝜇 of Π≺, the assignment 𝜇′ differing from 𝜇 only for the interpretation of 𝑎𝑖 and 𝑎𝑖+1 and
such that 𝜇′(𝑎𝑖) = 𝜇(𝑎𝑖) + 𝜇(𝑎𝑖+1) and 𝜇′(𝑎𝑖+1) = 0 is a model of Π≺ and hence of Π≺′ .

2. If 𝑎𝑖 is not executable in any state of 𝑅≺𝑖−1𝐼 then 𝑅≺𝑖−1𝐼 = 𝑅≺𝑖𝐼 . Thus, the conclusion follows.

 ∎

Corollary 1. In the hypothesis of the previous theorem, the pattern

𝑎1;… ; 𝑎𝑖−1; 𝑎𝑖+1;… ; 𝑎𝑗 ; 𝑎𝑖; 𝑎𝑗+1;… ; 𝑎𝑘

with 𝑖 < 𝑗 ≤ 𝑘 obtained from ≺ by moving 𝑎𝑖 after 𝑎𝑗 , dominates ≺.

Proof. From Theorem 5, we can remove 𝑎𝑖 from ≺ and obtain an equivalent pattern ≺′. From Theorem 4, adding an action to ≺′

leads to a new pattern dominating ≺′ and hence also ≺. ∎

Artiϧcial Intelligence 352 (2026) 104482

11

M. Cardellini, E. Giunchiglia and M. Maratea

It is relatively easy to check when the first condition of the theorem is met. For instance, if we consider the pattern obtained
concatenating the actions in (5) and in (6), we obtain two consecutive occurrences of the action lftl in the resulting pattern: since
lftl is eligible for rolling, one of such two occurrences can be safely removed.

About the second condition of the theorem, it is possible in polynomial time to compute a superset of 𝑅≺𝑖−1𝐼 and check 𝑎𝑖 exe-
cutability in any of its states, by using the Asymptotic Relaxed Plan Graph (arpg) construction [4]. We will denote the superset of
𝑅≺𝑖−1𝐼 computed with arpg with 𝑅≺𝑖−1arpg. For a detailed presentation of the arpg and its properties, see [4]. Here we convey its basic
ideas and properties by considering our running example, which will be used also to show an application of the first condition of the
theorem.

Example 6. In the arpg construction, each Boolean variable is associated to the set of values it can assume, and each numeric
variable is associated to a convex interval representing an overapproximation of the set of values it can assume. A relaxed state is then
an assignment in which each variable gets a value in the associated set of values. Starting from the representation 𝑅𝜖arpg of the initial
state,

𝑅𝜖
arpg = {⟨𝑝, {⊥}⟩, ⟨𝑥𝑙, [−𝑋𝐼 ,−𝑋𝐼]⟩, ⟨𝑥𝑟, [𝑋𝐼 , 𝑋𝐼]⟩, ⟨𝑞𝑙, [𝑄,𝑄]⟩, ⟨𝑞𝑟, [0, 0]⟩, ⟨𝑞, [1, 1]⟩},

given the 𝑖th action 𝑎𝑖 whose preconditions are satisfied by some relaxed state in 𝑅≺𝑖arpg, 𝑅
≺𝑖;𝑎𝑖
arpg is obtained by modifying the interval

associated to each variable assigned by 𝑎𝑖 to include the possible new values the variable can assume after the consecutive execution
of 𝑎𝑖 for finitely many times. For instance, considering the set 𝑅lre;rle;lftr;rgtl

𝐼 representing the set of states reachable with the initial
pattern lre; rle; lftr; rgtl of the pattern (5), the corresponding superset 𝑅lre;rle;lftr;rgtl

arpg computed with arpg is
{⟨𝑝, {⊥}⟩, ⟨𝑥𝑙 , [−𝑋𝐼 ,+∞)⟩, ⟨𝑥𝑟, (−∞, 𝑋𝐼]⟩, ⟨𝑞𝑙 , [𝑄,𝑄]⟩, ⟨𝑞𝑟, [0, 0]⟩, ⟨𝑞, [−1, 1]⟩}.

See [4] for more details. Thus, assuming ≺ is (5), the 𝑖th action in the pattern is executable in at least one state in the overapproximation
of the set of states 𝑅≺𝑖−1𝐼 computed with arpg. Further, there are no two consecutive occurrences of the same action, and thus it is
not possible to simplify the pattern ≺ by removing some action using the two proposed methods.

On the other hand, if ≺ is (6), then the set 𝑅lftl;rgtr
arpg , representing the superset of the states reachable from 𝑅𝜖arpg by executing

the first 2 actions in the pattern (6), is
{⟨𝑝, {⊥}⟩, ⟨𝑥𝑙 , (−∞,−𝑋𝐼]⟩, ⟨𝑥𝑟, [𝑋𝐼 ,+∞)⟩, ⟨𝑞𝑙 , [𝑄,𝑄]⟩, ⟨𝑞𝑟, [0, 0]⟩, ⟨𝑞, [1, 1]⟩}.

Then, the action disc is not executable in any state represented by 𝑆lftl;rgtr
arpg (and thus 𝑅lftl;rgtr;disc

arpg = 𝑅lftl;rgtr
arpg), and similarly for

the actions exch, and conn. Thus, we can remove such actions from (6) and obtain an equivalent pattern.
Notice that starting from the representation of the initial state at level 𝑙 = 0, we can

1. extend the arpg construction by inserting the action level 𝑙 consisting of the actions whose preconditions are relaxed-satisfied at
that level,

2. compute the relaxed representation of the state at level 𝑙 + 1 which are reachable given the execution of the actions at level 𝑙, and
3. iterate the process until no more new actions can be introduced.

The result is that each action in the arpg has an associated level, in our case:
𝑙𝑒𝑣𝑒𝑙 0 ∶ lftl, rgtl, lftr, rgtr, rle, lre,
𝑙𝑒𝑣𝑒𝑙 1 ∶ conn,
𝑙𝑒𝑣𝑒𝑙 2 ∶ disc, exch,

(7)

corresponding to a partial order on actions. By construction, if an action 𝑎𝑖 at level 𝑙 precedes all the actions with level < 𝑙 in the
pattern ≺, then 𝑎 is not executable in any state in 𝑅≺𝑖−1𝐼 and moving 𝑎𝑖 after all the actions at level < 𝑙 leads to a dominating pattern.

As the example makes clear, building the pattern by extending the partial order given by the arpg construction ensures that no
action can be removed based on the results in this section. In [2], patterns were computed with such methodology.

3.3.2. Improving patterns by swapping action occurrences
Consider a pattern ≺′ = 𝑎1;… ; 𝑎𝑖−1; 𝑎𝑖+1; 𝑎𝑖; 𝑎𝑖+2;… ; 𝑎𝑘, 0 ≤ 𝑖 ≤ 𝑘, differing from ≺ only because now 𝑎𝑖+1 precedes 𝑎𝑖 in ≺′. As

usual, ≺𝑖−1 = ≺′
𝑖−1 = 𝑎1;… ; 𝑎𝑖−1 while ≺𝑖 = ≺𝑖−1; 𝑎𝑖 ≠ ≺′

𝑖 = ≺′
𝑖−1; 𝑎𝑖+1 and ≺𝑖+1 = ≺𝑖; 𝑎𝑖+1 ≠ ≺′

𝑖+1 = ≺′
𝑖 ; 𝑎𝑖.

We now define sufficient conditions under which ≺′ (strongly) dominates or is (strongly) equivalent to ≺. Clearly, for any state
𝑠 ∈ 𝑅≺𝑖−1𝐼 if 𝑎𝑚𝑖 , 𝑚 ≥ 1, (resp. 𝑎𝑛𝑖+1, 𝑛 ≥ 1) is executable in 𝑠 then 𝑟𝑒𝑠(𝑎𝑚𝑖 , 𝑠) (resp. 𝑟𝑒𝑠(𝑎𝑛𝑖+1, 𝑠)) belongs to both 𝑅

≺𝑖+1
𝐼 and 𝑅≺

′
𝑖+1

𝐼 , and so
the possible differences between 𝑅≺𝑖+1𝐼 (resp. 𝑅≺𝐼) and 𝑅

≺′𝑖+1
𝐼 (resp. 𝑅≺′𝐼) come from executing either 𝑎𝑚𝑖 ; 𝑎𝑛𝑖+1 or 𝑎𝑛𝑖+1; 𝑎𝑚𝑖 in 𝑠. From this,

it follows that ≺ and ≺′ are strongly equivalent when 𝑎𝑖 and 𝑎𝑖+1 do not mutually interfere. Given two actions 𝑎 and 𝑎′,

1. 𝑎 does not interfere with the executability of 𝑎′ if for each assignment 𝑥 ∶= 𝑒 of 𝑎, 𝑥 does not occur in the preconditions of 𝑎′;
2. 𝑎 does not interfere with the effects of 𝑎′ if for each assignment 𝑥 ∶= 𝑒 of 𝑎 (𝑖) 𝑥 does not occur in the assignments of 𝑎′, or (𝑖𝑖) both

𝑎 and 𝑎′ assign 𝑥 with a linear increment, or (𝑖𝑖𝑖) both 𝑎 and 𝑎′ assign 𝑥 with a simple assignment,
3. 𝑎 and 𝑎′ do not mutually interfere if 𝑎 does not interfere with the executability and the effects of 𝑎′ and also 𝑎′ does not interfere
with the executability and effects of 𝑎.

Artiϧcial Intelligence 352 (2026) 104482

12

M. Cardellini, E. Giunchiglia and M. Maratea

Theorem 6. Let Π be a numeric planning problem. Let ≺ = 𝑎1;… ; 𝑎𝑘 be a pattern, 𝑘 ≥ 2. Let 𝑖 ∈ [1, 𝑘). Let ≺′ be the pattern differing from
≺ only because 𝑎𝑖+1 precedes 𝑎𝑖 in ≺′. If 𝑎𝑖 and 𝑎𝑖+1 do not mutually interfere, ≺ and ≺′ are strongly equivalent.

Proof. If 𝑎𝑖 and 𝑎𝑖+1 do not mutually interfere then for any state 𝑠, and for any 𝑚, 𝑛 ≥ 0, if and only if both 𝑎𝑚𝑖 and 𝑎𝑛𝑖+1 are executable
in 𝑠, then

1. 𝑟𝑒𝑠(𝑎𝑛𝑖+1, 𝑟𝑒𝑠(𝑎
𝑚
𝑖 , 𝑠)) is defined

2. 𝑟𝑒𝑠(𝑎𝑚𝑖 , 𝑟𝑒𝑠(𝑎
𝑛
𝑖+1, 𝑠)) is defined,

3. 𝑟𝑒𝑠(𝑎𝑚𝑖 , 𝑟𝑒𝑠(𝑎
𝑛
𝑖+1, 𝑠)) = 𝑟𝑒𝑠(𝑎𝑛𝑖+1, 𝑟𝑒𝑠(𝑎

𝑚
𝑖 , 𝑠)).

The above facts follow from the non-mutual interference of 𝑎𝑖 and 𝑎𝑖+1.
Assume ≺ and ≺′ are not strongly equivalent. Then, for some initial state 𝑠, there is a goal state, e.g., in 𝑅≺𝑠 which is not in 𝑅≺

′
𝑠 ,

which is possible only if there exists a state 𝑠′′ = 𝑟𝑒𝑠(𝑎𝑛𝑖+1, 𝑟𝑒𝑠(𝑎
𝑚
𝑖 , 𝑠

′)) with 𝑠′ ∈ 𝑅≺𝑖−1𝑠 , 𝑚, 𝑛 ≥ 0, 𝑠′′ in 𝑅≺𝑖+1𝑠 but not in 𝑅≺
′
𝑖+1

𝑠 . However,
this is not possible since also 𝑟𝑒𝑠(𝑎𝑚𝑖 , 𝑟𝑒𝑠(𝑎𝑛𝑖+1, 𝑠′)) is defined and equal to 𝑠′′. ∎

Given the theorem, the problem of determining whether ≺ dominates and/or is dominated by ≺′ arises when 𝑎𝑖 and 𝑎𝑖+1 mutually
interfere. Clearly, if 𝑎𝑖 and 𝑎𝑖+1 interfere in their effects, for some state 𝑠 and 𝑚, 𝑛 ≥ 1, we may have that executing 𝑎𝑚𝑖 ; 𝑎𝑛𝑖+1 or 𝑎𝑛𝑖+1; 𝑎𝑚𝑖
in 𝑠 leads to a different state and thus in the general case, ≺′ does not strongly dominate ≺ and ≺ does not strongly dominate ≺′.
However, when either (𝑖) 𝑎𝑖 blocks 𝑎𝑖+1 or (𝑖𝑖) 𝑎𝑖+1 supports 𝑎𝑖 and 𝑎𝑖 does not interfere with the executability of 𝑎𝑖+1 then 𝑎𝑚𝑖 ; 𝑎𝑛𝑖+1 is
executable in a subset of the states in which 𝑎𝑛𝑖+1; 𝑎𝑚𝑖 is executable. An action 𝑎

1. blocks an action 𝑎′ if 𝑎′ contains a precondition which becomes contradictory once the variables 𝑣 are substituted with 𝑒 whenever
𝑣 ∶= 𝑒 is a simple assignment in eff(𝑎), and

2. supports 𝑎′ if 𝑎 interferes with the executability of 𝑎′ and for each precondition 𝑝 of 𝑎′ containing a variable 𝑣 assigned by 𝑎,
(𝑖) 𝑣 is assigned by 𝑎 with a simple assignment, and (𝑖𝑖) 𝑝 becomes valid once each variable 𝑣 is substituted with 𝑒 whenever
𝑣 ∶= 𝑒 ∈ eff(𝑎).

The above definitions of an action blocking/supporting another action are similar to the notion of disabling/enabling action in [17]
in the classical setting. If 𝑎𝑚𝑖 ; 𝑎𝑛𝑖+1 is executable in a subset of the states in which 𝑎𝑛𝑖+1; 𝑎𝑚𝑖 is executable, and 𝑎𝑖 does not interfere with
the effects of 𝑎𝑖+1 – and vice versa –, then ≺′ strongly dominates ≺.

Theorem 7. Let Π be a numeric planning problem. Let ≺ = 𝑎1;… ; 𝑎𝑘 be a pattern, 𝑘 ≥ 2. Let 𝑖 ∈ [1, 𝑘). Let ≺′ be the pattern differing from
≺ only because 𝑎𝑖+1 precedes 𝑎𝑖 in ≺′. Assume that 𝑎𝑖 does not interfere with the effects of 𝑎𝑖+1 and vice versa. Assume that either (𝑖) 𝑎𝑖 blocks
𝑎𝑖+1, or (𝑖𝑖) 𝑎𝑖+1 supports 𝑎𝑖 and 𝑎𝑖 does not interfere with the executability of 𝑎𝑖+1. Then, ≺′ strongly dominates ≺.

Proof. We prove that for any state 𝑠, 𝑅≺𝑖+1𝑠 ⊆ 𝑅
≺′𝑖+1
𝑠 . Let 𝑠 be an arbitrary state.

For any 𝑚, 𝑛 ≥ 0, we prove that if 𝑠′′ ∈ 𝑅≺𝑖+1𝑠 , i.e., if 𝑠′′ = 𝑟𝑒𝑠(𝑎𝑚𝑖 ; 𝑎
𝑛
𝑖+1, 𝑠

′) for some state 𝑠′ ∈ 𝑅≺𝑖−1𝑠 , then 𝑠′′ = 𝑟𝑒𝑠(𝑎𝑛𝑖+1; 𝑎
𝑚
𝑖 , 𝑠

′) and
thus 𝑠′′ ∈ 𝑅

≺′𝑖+1
𝑠 .

For either 𝑚 = 0 or 𝑛 = 0, the sequence 𝑎𝑚𝑖 ; 𝑎𝑛𝑖+1 is equal to the sequence 𝑎𝑛𝑖+1; 𝑎𝑚𝑖 and hence 𝑟𝑒𝑠(𝑎𝑚𝑖 ; 𝑎𝑛𝑖+1, 𝑠′) = 𝑟𝑒𝑠(𝑎𝑛𝑖+1; 𝑎
𝑚
𝑖 , 𝑠

′) and
the thesis trivially follows.

Assume 𝑚 ≥ 1. If 𝑎𝑖 blocks 𝑎𝑖+1 then 𝑎𝑖+1 is not executable in 𝑟𝑒𝑠(𝑎𝑚𝑖 , 𝑠) and thus 𝑛 = 0, and this case is already covered by the
previous one.

Assume also 𝑛 ≥ 1. If 𝑎𝑖 does not interfere with the executability and the effects of 𝑎𝑖+1 then since 𝑎𝑛𝑖+1 is executable in 𝑟𝑒𝑠(𝑎𝑚𝑖 , 𝑠′),
𝑎𝑛𝑖+1 is also executable in 𝑠. Further, since 𝑎𝑖+1 supports 𝑎𝑖, 𝑎𝑖 is executable in 𝑟𝑒𝑠(𝑎𝑛𝑖+1, 𝑠′). Given that 𝑟𝑒𝑠(𝑎𝑛𝑖+1; 𝑎𝑚𝑖 , 𝑠′) is defined,
𝑟𝑒𝑠(𝑎𝑚𝑖 ; 𝑎

𝑛
𝑖+1, 𝑠

′) = 𝑟𝑒𝑠(𝑎𝑛𝑖+1; 𝑎
𝑚
𝑖 , 𝑠

′) follows from the hypothesis that 𝑎𝑖 and 𝑎𝑖+1 do not mutually interfere in their effects. ∎

Example 7. According to our definitions and considering the sets of actions at each level of the arpg as in Eq. (7)

1. for level 0, each pair of distinct actions at this level do not mutually interfere except for the pairs
{lftl, lftr}, {rgtl, rgtr}, {lre, rle}. Further, no action at this level blocks or support another action at the same level.

2. level 1 consists of the single action conn, and
3. for level 2, the action disc blocks the action exch.

Given the above, given two patterns ≺ and ≺′ extending the partial order induced by the arpg, if disc follows exch in ≺, ≺ strongly
dominates ≺′. Notice that the last three actions in ≺ are as in conn; exch; disc, where conn precedes exch because of the arpg, and
exch precedes disc because disc blocks exch. The fact that conn; exch is better than exch; conn is also a consequence of Theorem 7:
conn supports exch, the two actions do not interfere in their effects and exch does not interfere with the executability of conn. Indeed,
the order induced by the arpg construction may correspond to the supporting relation (as in this case), but this is not always the
case. Consider for example the modification of the example in which the two robots start in the same position and are already paired.
In such a case, 𝑥𝑙 = 𝑥𝑟 and 𝑝 = ⊤ holds at level 0 and conn, exch and disc will all be at the same arpg level. According to the arpg
partial ordering, the three actions can be put in any ordering, while Theorem 7 allows us to conclude that the pattern conn; exch; disc
strongly dominates the other 5 orderings.

Artiϧcial Intelligence 352 (2026) 104482

13

M. Cardellini, E. Giunchiglia and M. Maratea

3.4. Plan quality

Thanks to Theorem 3, we know that any model 𝜇 of Π≺ corresponds to the valid plan 𝜋 = 𝑎𝜇(𝑎1)1 ; 𝑎𝜇(𝑎2)2 ;… ; 𝑎𝜇(𝑎𝑘)𝑘 . However, the
discovered plan may include redundant actions.
Example 8. Assume, as in Example 1, that the initial state is 𝐼 = {𝑝 = ⊥, 𝑥𝑙 = −𝑋𝐼 , 𝑥𝑟 = 𝑋𝐼 , 𝑞𝑙 = 𝑄, 𝑞𝑟 = 0, 𝑞 = 1}, where 𝑋𝐼 , 𝑄 are
positive integers, and that 𝐺 = {𝑞𝑙 = 0, 𝑞𝑟 = 𝑄, 𝑥𝑙 = −𝑋𝐼 , 𝑥𝑟 = 𝑋𝐼}.

If the pattern is computed using the arpg construction outlined in the previous subsection, extended to order two actions at the
same level using the results of Theorem 7, the pattern ≺𝐼 returned by ComputePattern(Π) in Algorithm 1 is, e.g.,

≺𝐼 = lftl; rgtl; lftr; rgtr; rle; lre; conn; exch; disc,

and the procedure spp(Π) will determine the existence of a plan after two concatenations of the above pattern, i.e., with
≺ = lftl1; rgtl1; lftr1; rgtr1; rle1; lre1; conn1; exch1; disc1;

lftl2; rgtl2; lftr2; rgtr2; rle2; lre2; conn2; exch2; disc2.

The model 𝜇 returned by Solve(Π≺) will be such that
𝜇(lftl1) = 𝑘, 𝜇(rgtl1) = 𝑘 +𝑋𝐼 ,
𝜇(lftr1) = 𝑋𝐼 , 𝜇(rgtr1) = 0,
𝜇(rle1) = 𝑚, 𝜇(lre1) = 𝑛,

𝜇(conn1) = 1, 𝜇(exch1) = 𝑄, 𝜇(disc1) = 1,
𝜇(lftl2) = 𝑝 +𝑋𝐼 , 𝜇(rgtl2) = 𝑝,
𝜇(lftr2) = 0, 𝜇(rgtr2) = 𝑋,
𝜇(rle2) = 𝑞, 𝜇(lre2) = 𝑟,

𝜇(conn2) = 𝜇(exch2) = 𝜇(disc2) = 0,

for some 𝑘, 𝑚, 𝑛, 𝑝, 𝑞, 𝑟 ≥ 0 with 𝑚, 𝑛, 𝑞, 𝑟 ≤ 1 and 𝑛 = 1 when 𝑚 = 1. Any such plan corresponds to

1. having the left robot going to the left for 𝑘 times (𝜇(lftl1) = 𝑘) and then to the right for 𝑘 +𝑋 times (𝜇(rgtl1) = 𝑘 +𝑋𝐼) to reach
the origin,

2. having the right robot going directly to the origin (𝜇(lftr1) = 𝑋𝐼 , 𝜇(rgtr1) = 0),
3. possibly enabling the right-to-left exchange (𝜇(rle1) = 𝑚 ∈ [0, 1]) and then surely enabling the left-to-right exchange (𝜇(lre1) = 1)
when 𝜇(rle1) = 1,

4. connecting, exchanging 𝑄 objects and disconnecting (𝜇(conn1) = 1, 𝜇(exch1) = 𝑄, 𝜇(disc1) = 1),
5. having the left robot going to the left for 𝑝 +𝑋𝐼 times (𝜇(lftl2) = 𝑝 +𝑋𝐼) and then to the right for 𝑝 times (𝜇(rgtl2) = 𝑝) to reach
the position it originally had,

6. having the right robot going directly to its original position (𝜇(lftr2) = 0, 𝜇(rgtr2) = 𝑋𝐼),
7. (possibly) enabling the left-to-right and/or the right-to-left exchange (𝜇(rle2) = 𝑞, 𝜇(lre2) = 𝑟).

In such plans, some actions can be executed even if unnecessary (e.g., lftl1, lre) or can be executed more times than necessary
(e.g., lftl1). This does not happen when 𝑘 = 𝑚 = 𝑛 = 𝑝 = 𝑞 = 𝑟 = 0. In particular, 𝑘 = 0 (resp. 𝑝 = 0) corresponds to preventing the
left robot from going unnecessarily to the left before (resp. after) connecting.

Notice that if rolling is disabled (i.e., if for every action 𝑎, (𝑎 = 0 ∨ 𝑎 = 1) is imposed),

1. ≺𝐼 needs to be concatenated at least 2𝑋𝐼 +𝑄 times in ≺ before Solve(Π≺) becomes satisfiable, but
2. when ≺ is ≺𝐼 concatenated 2𝑋𝐼 +𝑄 times, in any plan corresponding to a model of Π≺, (𝑖) no lftl useless action occurs before
the exch action, and (𝑖𝑖) no useless rgtl action occurs after the exch action.

Analogously, if in spp(Π) we do not allow executing two actions which are part of a same ≺𝐼 unless they do not mutually interfere
(i.e., if for every pair of distinct mutually interfering actions 𝑎 and 𝑎′ in ≺𝐼 , (𝑎 = 0 ∨ 𝑎′ = 0) is imposed),

1. ≺𝐼 needs to be concatenated at least 5 times in ≺ before Solve(Π≺) becomes satisfiable7, but
2. when ≺ is ≺𝐼 concatenated 5 times, in any plan corresponding to a model of Π≺, (𝑖) no lftl useless action occurs before the exch
action, and (𝑖𝑖) no useless rgtl action occurs after the exch action.

As the example shows, the plan returned by spp(Π) may include unnecessary actions, especially when allowing for action rolling
and/or the execution of mutually interfering actions which are part of the same initially computed pattern ≺𝐼 . This fact is not
surprising if Solve(Π≺) is only required to compute one of the possibly infinitely many models of Π≺. Indeed, in some applications,
it may be useful to look for a model 𝜇 whose corresponding plan 𝜋 is optimal according to some criteria. In our setting, we say that
a plan 𝜋 corresponding to a model 𝜇 of Π≺ is

7 In step 1 the robots moves until 𝑥𝑙 = 𝑥𝑟, in step 2 they connect, in step 3 they exchange the objects, in step 4 they disconnect and in step 5 they
return to the original positions.

Artiϧcial Intelligence 352 (2026) 104482

14

M. Cardellini, E. Giunchiglia and M. Maratea

1. optimal if, for any pattern ≺′, there does not exist a plan 𝜋′ corresponding to a model 𝜇′ of Π≺′ , with fewer actions than 𝜋,
2. ≺-optimal if there does not exist another model 𝜇′ of Π≺ whose corresponding plan has fewer actions than 𝜇,
3. 𝜋-optimal if there does not exist another model 𝜇′ whose corresponding plan 𝜋′ is a subsequence of 𝜋.

Clearly, if a plan 𝜋 is optimal, then, for any pattern ≺, 𝜋 is also ≺-optimal, and, if 𝜋 is ≺-optimal, then it is also 𝜋-optimal. Any plan 𝜋
satisfying one of the above two last conditions is irredundant: removing some actions in 𝜋 leads to an invalid plan. Though returning
an irredundant plan may be a desirable property, it comes with an extra price, since it is well known that checking whether a plan
is irredundant is already co-np-hard in the classical setting with no numeric variables (see, e.g., [18]).

While extending our work for computing optimal plans is not easy (see [19] for the most related recent work on the topic), a
≺-optimal and/or 𝜋-optimal plan correspond to a model of Π≺, which can be computed as follows. A model 𝜇 with corresponding
plan 𝜋

1. is ≺-optimal if it minimizes ∑𝑘
𝑖=1 𝑎𝑖, and

2. is 𝜋-optimal if it minimizes ∑𝑘
𝑖=1 𝑎𝑖 subject to 𝑎 ≤ 𝜇(𝑎) for each 𝑎 ∈ 𝐴, i.e., it is a subsequence of 𝜋.

Thus, it is relatively easy to find a ≺-optimal and/or 𝜋-optimal plan if the solver smt also supports the minimization of ∑𝑘
𝑖=1 𝑎𝑖, as, e.g.,

Z3 v4.12.2 [20], does. Other solutions are possible to improve the quality of the returned plan. Bofill et al., (2016) propose (𝑖) to call
a standard smt solver to find an initial model 𝜇 of Π≺, and then (𝑖𝑖) call a Maxsmt solver on the problem Π≺ ∪ {𝑎𝑖 = 0 ∶ 𝜇(𝑎𝑖) = 0, 𝑖 ∈
[1, 𝑘]} together with {𝑎𝑖 = 0 ∶ 𝜇(𝑎𝑖) > 0, 𝑖 ∈ [1, 𝑘]}, the latter treated as soft clauses (see the paper for more details). Building on the
concepts introduced in classical planning by Giunchiglia and Maratea, (2007), another possibility for effectively computing models
𝜇 with a maximal set of actions 𝑎 such that 𝜇(𝑎) = 0 is to prioritize the search for these solutions in the solver’s heuristic, and some
smt solvers, such as MathSat5 [22], offer native support for specifying the order in which the heuristic should operate (see, e.g.,
[21] for more details). Both these methods allow us to compute an irredundant plan assuming rolling actions is not possible. Other
methods have been proposed, especially in the classical setting, some of which working in polynomial time, see, e.g., [18,23,24]

In any case, while these methods may reduce the number of executed actions, they do not guarantee to return an optimal plan.
Indeed, an optimal plan may not correspond to a model of Π≺.

4. Relation to planning as satisfiability encodings

Let Π = ⟨𝑉𝐵 , 𝑉𝑁 , 𝐴, 𝐼, 𝐺⟩ be a numeric planning problem. As briefly outlined in the introduction, in the standard planning as
satisfiability framework the problem of finding a solution is solved by (𝑖) considering 𝑛 copies of a logical model of how actions cause
transitions from one state to another, and (𝑖𝑖) checking the existence of a solution starting with 𝑛 = 0 transitions, and incrementing
𝑛 upon failure, see, e.g., [5]. Different approaches have been proposed, each characterized by how the transitions from one state to
another are encoded as a logical formula.

In this section, we first formally define what is an encoding in the planning as satisfiability framework (Section 4.1), then we
present the rolled-up and standard encodings (Section 4.2), the 𝑅2∃ encoding (Section 4.3), and how they are related to our pattern
encoding when used in the planning as satisfiability framework (Section 4.4).

4.1. Planning as satisfiability

Formally, a (planning as satisfiability) encoding 𝐸 of Π is a tuple
Π𝐸 = ⟨ ,,(),  ( ,, ′),()⟩, (8)

where  is a finite set of propositional and numeric state variables including 𝑉𝐵 ∪ 𝑉𝑁 .  is a finite set of action variables, each one
equipped with a domain representing the values it can take. () and () are the initial state formula and the goal formula, respectively,
defined as in the previous section, with the difference that now the goal formula is simply the conjunction of the formulas in 𝐺, once
each 𝑣 = ⊤ and 𝑣 = ⊥ are substituted with 𝑣 and ¬𝑣, respectively.

Each planning as satisfiability encoding is characterized by the definition of the symbolic transition relation  ( ,, ′), a formula
on the variables  ∪ ∪  ′, such that  ′ = {𝑣′ ∣ 𝑣 ∈ } is a copy of  and

1. correctness: each model 𝜇 of  ( ,, ′) has to correspond to one sequence of actions 𝛼 such that (𝑖) 𝛼 is executable in the state 𝑠
such that, for each variable 𝑣 ∈ 𝑉𝐵 ∪ 𝑉𝑁 , 𝑠(𝑣) = 𝜇(𝑣); and (𝑖𝑖) the last state induced by 𝛼 executed in 𝑠 is the state 𝑠′ such that, for
each variable 𝑣 ∈ 𝑉𝐵 ∪ 𝑉𝑁 , 𝑠′(𝑣) = 𝜇(𝑣′), and

2. completeness: for each state 𝑠 and action 𝑎 in 𝐴, if 𝑠′ is the state resulting from the execution of 𝑎 in 𝑠, then there must be a model
𝜇 of  ( ,, ′) such that for each variable 𝑣 ∈ 𝑉𝐵 ∪ 𝑉𝑁 , 𝑠(𝑣) = 𝜇(𝑣) and 𝑠′(𝑣) = 𝜇(𝑣′).

Let Π𝐸 = ⟨ ,,(),  ( ,, ′),()⟩ be an encoding of Π. In the planning as satisfiability approach [5], an integer 𝑛 ≥ 0 called
bound or number of steps is fixed, 𝑛 + 1 disjoint copies 0,… ,𝑛 of the set  of state variables, and 𝑛 disjoint copies 0,… ,𝑛−1 of
the set  of action variables are made, and then

1. (0) is the formula in the variables 0 obtained by substituting each variable 𝑥 ∈  with 𝑥0 ∈ 0 in ();
2. for each step 𝑖 = 0,… , 𝑛 − 1,  (𝑖,𝑖,𝑖+1) is the formula in the variables 𝑖 ∪𝑖 ∪ 𝑖+1 obtained by substituting each variable

𝑥 ∈  (resp. 𝑎 ∈ , 𝑥′ ∈  ′) with 𝑥𝑖 ∈ 𝑖 (resp. 𝑎𝑖 ∈ 𝑖, 𝑥𝑖+1 ∈ 𝑖+1) in  ( ,, ′);

Artiϧcial Intelligence 352 (2026) 104482

15

M. Cardellini, E. Giunchiglia and M. Maratea

3. (𝑛) is the formula in the variables 𝑛 obtained by substituting each variable 𝑥 ∈  with 𝑥𝑛 ∈ 𝑛 in ().

Then, the (planning as satisfiability) encoding Π𝐸 of Π with bound 𝑛 is the formula

Π𝐸𝑛 = (0) ∧
𝑛−1
⋀

𝑖=0
 (𝑖,𝑖,𝑖+1) ∧ (𝑛). (9)

The plan corresponding to a model 𝜇 of Π𝐸𝑛 is the sequence of actions 𝛼0;… ; 𝛼𝑛−1, where each 𝛼𝑖 is the sequence of actions corre-
sponding to the model of  (𝑖,𝑖,𝑖+1) obtained by restricting 𝜇 to 𝑖 ∪𝑖 ∪ 𝑖+1, 𝑖 ∈ [0, 𝑛). The standard procedure for computing
a plan for Π is to
1. start fixing the bound 𝑛 to 0,
2. check the existence of a model 𝜇 for Π𝐸𝑛 , returning the plan corresponding to 𝜇 if such 𝜇 is determined, and
3. increment 𝑛 and repeat the previous step, otherwise.
The correctness of  ( ,, ′) ensures the correctness of Π𝐸 : each sequence of actions returned by the standard procedure using Π𝐸
is a plan. The completeness of  ( ,, ′) ensures also the completeness of Π𝐸 : if there exists a plan for Π of length 𝑛, Π𝐸𝑛 is satisfiable
and the standard procedure using Π𝐸 will return a plan (notice that, depending on the encoding, Π𝐸𝑘 can become satisfiable even for
some 𝑘 < 𝑛).

It is clear that the number of variables and size of (9) increase with the bound 𝑛, explaining why much of the research in planning
as satisfiability has concentrated on how to produce encodings allowing to find plans with the lowest possible bound 𝑛.

4.2. Rolled-up and standard encodings

In the state-of-the-art rolled-up encoding Π𝑅 of Π proposed in [6], each action 𝑎 ∈ 𝐴 is defined as an action variable which can get
an arbitrary value 𝑘 ∈ ℕ, corresponding to have 𝑘 (consecutive) occurrences of 𝑎. 8 Then, the symbolic transition relation  𝑅( ,, ′)
of Π𝑅 is the conjunction of the formulas in the following sets:
1. pre𝑅(𝐴), consisting of, for each 𝑎 ∈ 𝐴, 𝑣 = ⊥ and 𝑤 = ⊤ in pre(𝑎),

𝑎 > 0 → (¬𝑣 ∧𝑤),

and, for each 𝑎 ∈ 𝐴 and 𝜓 ⊵ 0 in pre(𝑎),
𝑎 > 0 → 𝜓 ⊵ 0, 𝑎 > 1 → 𝜓[𝑎] ⊵ 0,

where 𝜓[𝑎] is the linear expression obtained from 𝜓 by substituting each variable 𝑥 with
(a) 𝑥 + (𝑎 − 1) × 𝜓1, whenever 𝑥 += 𝜓1 ∈ eff(𝑎) is a linear increment,
(b) 𝜓1, if 𝑥 ∶= 𝜓1 ∈ eff(𝑎) is a simple assignment.
The last two formulas ensure that 𝜓 ⊵ 0 holds in the states in which the first and the last execution of 𝑎 happens (See [6]).

2. eff𝑅(𝐴), consisting of, for each 𝑎 ∈ 𝐴, 𝑣 ∶= ⊥, 𝑤 ∶= ⊤, linear increment 𝑥 += 𝜓 and general assignment 𝑦 ∶= 𝜓1 in eff(𝑎),
𝑎 > 0 → (¬𝑣′ ∧𝑤′ ∧ 𝑥′ = 𝑥 + 𝑎 × 𝜓 ∧ 𝑦′ = 𝜓1).

3. f rame𝑅(𝑉𝐵 ∪ 𝑉𝑁), consisting of, for each variable 𝑣 ∈ 𝑉𝐵 and 𝑤 ∈ 𝑉𝑁 ,
⋀

𝑎∶ 𝑣∶=⊤∈eff(𝑎)
𝑎 = 0 ∧

⋀

𝑎∶ 𝑣∶=⊥∈eff(𝑎)
𝑎 = 0 → 𝑣′ ≡ 𝑣,

⋀

𝑎∶ 𝑤∶=𝜓∈eff(𝑎)
𝑎 = 0 → 𝑤′ = 𝑤.

4. mutex𝑅(𝐴), consisting of (𝑎1 = 0 ∨ 𝑎2 = 0), for each pair of distinct actions 𝑎1 and 𝑎2 which are in mutex. Two distinct actions, 𝑎1
and 𝑎2, are in mutex whenever there exists a variable assigned by 𝑎1 which occurs either in pre(𝑎2) or in the right-hand side of an
assignment in eff(𝑎2). 9

5. amo𝑅(𝐴), consisting of, for each action 𝑎 not eligible for rolling,
(𝑎 = 0 ∨ 𝑎 = 1).

Notice that if for action 𝑎 the formula (𝑎 = 0 ∨ 𝑎 = 1) belongs to  𝑅( ,, ′), we can equivalently (𝑖) define 𝑎 as a Boolean variable,
and then (𝑖𝑖) replace 𝑎 = 0, 𝑎 > 0, 𝑎 = 1 and 𝑎 > 1 with ¬𝑎, 𝑎, 𝑎 and ⊥, respectively, in  𝑅( ,, ′). It is clear that if  𝑅( ,, ′)
contains (𝑎 = 0 ∨ 𝑎 = 1) for any action 𝑎, then the rolled-up encoding Π𝑅 reduces to the standard encoding as defined, e.g., in [14].
Equivalently, in the standard encoding Π𝑆 of Π, the symbolic transition relation  𝑆 ( ,, ′) is obtained by adding, for each action
𝑎, (𝑎 = 0 ∨ 𝑎 = 1) to  𝑅( ,, ′). The decoding function of the rolled-up (resp. standard) encoding associates to each model 𝜇 of
 𝑅( ,, ′) (resp.  𝑆 ( ,, ′)) the sequences of actions in which each action 𝑎 occurs 𝜇(𝑎) times. The rolled-up and standard
encoding are correct and complete [6].

8 To ease the presentation, our definition of Π𝑅 considers just the cases 𝛼 = 0 and 𝛼 = 1 of Theorem 1 in [6], as we did in the previous section.
9 Notice that if two actions mutually interfere then they are also in mutex, while the vice versa does not necessarily hold. For instance, two actions

𝑎1 and 𝑎2 with 𝑥 ∶= 𝑥 + 1 in their effects are in mutex but do not mutually interfere, and allowing for both 𝑎1 > 0 and 𝑎2 > 0 in the 𝑅 encoding leads
to models not corresponding to valid plans.

Artiϧcial Intelligence 352 (2026) 104482

16

M. Cardellini, E. Giunchiglia and M. Maratea

Theorem 8 (Scala et al. (2016)). Let Π be a numeric planning problem. The planning as satisfiability rolled-up encoding Π𝑅 and the standard
encoding Π𝑆 are both correct and complete.

4.3. Relaxed-relaxed ∃ (𝑅2∃) encoding

A problem with the rolled-up and standard encodings is the presence of the axioms in mutex(𝐴), which forces some actions to
be set to 0 even when there exists an ordering allowing to execute them sequentially starting from a state 𝑠, see, e.g., [17]. Indeed,
allowing to set more actions to a value > 0 while maintaining correctness and completeness of the encoding, allows finding solutions
to (9) with a lower value for the bound. Several proposals along these lines have been made. Here we present the 𝑅2∃ encoding
firstly proposed by [7] for classical planning and then extended for numeric planning by [25], which is arguably the state-of-the-art
encoding in which actions are encoded as Boolean variables.

In the 𝑅2∃ encoding, action variables are Boolean and assumed to be ordered according to a given total order. Different orderings
lead to different 𝑅2∃ encodings. In the following, we represent the total ordering as an elementary and complete10 pattern.

Consider an elementary and complete pattern ≺ = 𝑎1; 𝑎2;… ; 𝑎𝑘, 𝑘 ≥ 0. We denote the 𝑅2∃ ≺-encoding of Π as Π𝑅2∃,≺. In Π𝑅2∃,≺,
for each action 𝑎 and variable 𝑣 assigned by 𝑎, a newly introduced variable 𝑣𝑎 with the same domain of 𝑣 is added to the set  of
state variables. Intuitively, each new variable 𝑣𝑎 represents the value of 𝑣 after the sequential execution of some actions in the initial
sequence of ≺ ending with 𝑎. The symbolic transition relation  𝑅2∃,≺( ,, ′) of Π𝑅2∃,≺ is the conjunction of the formulas in the
following sets:

1. pre𝑅2∃,≺(𝐴), consisting of, for each 𝑎 ∈ 𝐴, 𝑣 = ⊥, 𝑤 = ⊤ and 𝜓 ⊵ 0 in pre(𝑎),
𝑎→ (¬𝑣≪,𝑎 ∧𝑤≪,𝑎 ∧ 𝜓≪,𝑎 ⊵ 0),

where, for each variable 𝑥 ∈ 𝑉𝐵 ∪ 𝑉𝑁 , 𝑥≪,𝑎 stands for the variable (𝑖) 𝑥, if there is no action preceding 𝑎 in ≺ assigning 𝑥; and (𝑖𝑖)
𝑥𝑏, if 𝑏 is the last action assigning 𝑥 preceding 𝑎 in ≺. Analogously, 𝜓≪,𝑎 is the linear expression obtained from 𝜓 by substituting
each variable 𝑥 ∈ 𝑉𝑁 with 𝑥≪,𝑎.

2. eff𝑅
2∃,≺(𝐴), consisting of, for each 𝑎 ∈ 𝐴, 𝑣 ∶= ⊥, 𝑤 ∶= ⊤ and general assignment 𝑥 ∶= 𝜓 in eff(𝑎),

𝑎→ (¬𝑣𝑎 ∧𝑤𝑎 ∧ 𝑥𝑎 = 𝜓≪,𝑎),
¬𝑎→ (𝑣𝑎 ↔ 𝑣≪,𝑎 ∧𝑤𝑎 ↔ 𝑤≪,𝑎 ∧ 𝑥𝑎 = 𝑥≪,𝑎).

3. f rame𝑅
2∃,≺(𝑉𝐵 ∪ 𝑉𝑁), consisting of, for each variable 𝑣 ∈ 𝑉𝐵 and 𝑤 ∈ 𝑉𝑁 ,

𝑣′ ↔ 𝑣≪,𝑔 , 𝑤′ = 𝑤≪,𝑔 ,

where 𝑔 is a dummy action following all the other actions in ≺.

The decoding function of the 𝑅2∃ ≺-encoding associates to each model 𝜇 of  𝑅2∃,≺( ,, ′) the sequence of actions obtained from ≺
by deleting the actions 𝑎 with 𝜇(𝑎) = ⊥. In the 𝑅2∃ ≺-encoding, there are no mutex axioms and the size of  𝑅2∃,≺( ,, ′) is linear
in the size of Π. However, it introduces many new state variables (in the worst case, |𝑉𝐵 ∪ 𝑉𝑁 | × |𝐴|). The 𝑅2∃ ≺-encoding of Π is
correct and complete.
Theorem 9 (Bofill et al., (2017)). Let Π be a numeric planning problem. Let ≺ be an elementary and complete pattern. The planning as
satisfiability 𝑅2∃ ≺-encoding Π𝑅2∃,≺ is correct and complete.

4.4. Relationships among the standard, rolled-up, relaxed-relaxed exists and pattern encodings

Consider an elementary and complete pattern ≺. Since ≺ is elementary and complete, the ≺-symbolic transition relation
 ≺( ,≺, ′) can be used in the planning as satisfiability framework, allowing for a direct comparison between the so far proposed
planning as satisfiability encoding and the ≺-encoding in the planning as satisfiability framework. Given this, we write

1. Π𝑆,≺ for the planning as satisfiability encoding (8) in which the symbolic transition relation  ( ,, ′) is  ≺( ,≺, ′) as defined
in Section 3.2, and

2. Π𝑆,≺𝑛 for the corresponding planning as satisfiability encoding with bound 𝑛.

Of course, the planning as satisfiability pattern ≺-encoding Π𝑆,≺ is correct and complete.
Theorem 10. Let Π be a numeric planning problem. Let ≺ be an elementary and complete pattern. The planning as satisfiability pattern
≺-encoding Π𝑆,≺ is correct and complete.
Proof. If Π𝑆,≺ is either incorrect or incomplete, Theorem 3 does not hold for any problem Π. ∎

Comparing the planning as satisfiability pattern ≺-encoding Π𝑆,≺ with the rolled-up Π𝑅 and the Π𝑅2∃,≺ encoding, Π𝑆,≺ allows in
a single state transition

10 We recall the definition of Section 3.2: a pattern is elementary if the same action doesn’t appear multiple times in it, and complete if all the
actions in 𝐴 appear in it.

Artiϧcial Intelligence 352 (2026) 104482

17

M. Cardellini, E. Giunchiglia and M. Maratea

1. the multiple consecutive execution of the same action as in the Π𝑅 encoding, and
2. the combination of multiple, even contradictory effects on a same variable by different actions, as in the 𝑅2∃ encoding.

Because of this, Π𝑆,≺ dominates both Π𝑅 and Π𝑅2∃,≺, and the latter two dominate the standard encoding Π𝑆 . Given two planning
as satisfiability encodings 𝐸1 and 𝐸2 we say that 𝐸1 dominates 𝐸2 if, for each bound 𝑛, Π𝐸2

𝑛 satisfiability implies that also Π𝐸1
𝑛 is

satisfiable. Thus, if 𝐸1 dominates 𝐸2, assuming the correctness of the two encodings and that a plan will be searched by incrementally
increasing the bound starting from 0, 𝐸2 will never find a plan with a bound lower than the one needed by 𝐸1.

Theorem 11. Let Π be a numeric planning problem. Let ≺ be an elementary and complete pattern. The planning as satisfiability SPP ≺-
encoding Π𝑆,≺ dominates the rolled-up encoding Π𝑅 and the 𝑅2∃ ≺-encoding Π𝑅2∃,≺. Both Π𝑅 and Π𝑅2∃,≺ dominate the standard encoding
Π𝑆 .

Proof. We prove the various statements one by one. Since ≺ is elementary and complete, we can write  instead of ≺.

1. Π𝑆,≺ dominates Π𝑅. We have to prove that, for any bound 𝑛, if Π𝑅𝑛 is satisfiable then also Π𝑆,≺𝑛 is satisfiable, which follows from
the fact that any model 𝜇 of  𝑅( ,, ′) is also a model of  ≺( ,, ′). Let 𝜇 be a model of  𝑅( ,, ′) and 𝛼 be the sequence
of actions corresponding to the model 𝜇. Clearly, 𝛼 is a valid plan for the planning problem Π𝜇 = ⟨𝑉𝐵 , 𝑉𝑁 , 𝐴, 𝐼𝜇 , 𝐺𝜇⟩ in which 𝐼𝜇 is
the restriction of 𝜇 to 𝑉𝐵 ∪ 𝑉𝑁 and 𝐺𝜇 =

⋀

𝑣∈𝑉𝐵∶𝜇(𝑣′)=⊤ 𝑣 ∧
⋀

𝑣∈𝑉𝐵∶𝜇(𝑣′)=⊥ ¬𝑣 ∧
⋀

𝑣∈𝑉𝑁 𝑣 = 𝜇(𝑣′), i.e., the planning problem in which
the initial state and the goal formula corresponds to the values assigned by 𝜇 to the variables in  = 𝑉𝐵 ∪ 𝑉𝑁 and  ′. From the
completeness of the pattern encoding, the pattern 𝛼-encoding of Π𝜇 is satisfiable. Then, also the SPP ≺-encoding of Π𝜇 is satisfiable
since:
(a) any two actions in 𝛼 do not mutually interfere, and thus we can reorder the actions in 𝛼 as to respect the ordering in ≺

(Theorem 7), and
(b) for each action 𝑎 ∉ 𝛼, 𝜇(𝑎) = 0.

2. Π𝑆,≺ dominates Π𝑅2∃,≺. As in the previous case, we prove that any model 𝜇 of  𝑅2∃,≺( ,, ′) is also a model of  ≺( ,, ′). Let
𝜇 be a model of  𝑅2∃,≺( ,, ′) and 𝛼 be the sequence of actions corresponding to the model 𝜇. The sequence 𝛼 is a subsequence
of ≺ and thus, by the completeness of the SPP ≺-encoding, is also a model of  ≺( ,, ′).

3. Π𝑅 dominates Π𝑆 . The fact that Π𝑅 dominates Π𝑆 follows from the monotonicity of first order logic: the formulas in Π𝑆 are a
subset of the formulas in Π𝑅, and thus if Π𝑆 is satisfiable, so Π𝑅 is.

4. Π𝑅2∃,≺ dominates Π𝑆 . For simplicity, we assume action variables in  𝑆 ( ,, ′) are Boolean, i.e., that 𝑎 = 0 corresponds to ¬𝑎
and 𝑎 = 1 to 𝑎. Let 𝜇 be a model of  𝑆 ( ,, ′). Because of the effect and mutex axioms in Π𝑆 , for each variable 𝑣 and action 𝑎
such that 𝜇(𝑎) = 1, 𝑣 ∶= 𝑒 ∈ eff(𝑎), 𝜇(𝑣′) = 𝜇(𝑒), and we can extend 𝜇 to be a model of  𝑅2∃,≺( ,, ′) by assigning 𝜇(𝑣𝑎) = 𝜇(𝑒).

 ∎
In the example below, we show that for any two distinct encodings in {Π𝑆 ,Π𝑅,Π𝑅2∃,≺,Π𝑆,≺}, the only dominance relations that

hold are the ones established in the theorem.
Example 9. The rolled-up (resp. standard) encoding of the two robots problem admits a model with bound 𝑛𝑅 = 5 (resp. 𝑛𝑆 =
2𝑋𝐼 +𝑄 + 2, and thus 𝑛𝑆 = 𝑛𝑅 only when 𝑋𝐼 = 𝑄 = 1). Assuming that in ≺ actions are ordered as in the plan (2), Π𝑆,≺𝑛 is satisfiable
when 𝑛 = 𝑛𝑆,≺ = 1 < 𝑛𝑅, while Π𝑅

2∃,≺
𝑛 is satisfiable when 𝑛 = 𝑛𝑅2∃,≺ = 2(𝑋𝐼 − 1) +𝑄, and thus 𝑛𝑅2∃,≺ = 𝑛𝑆,≺ if and only if 𝑋𝐼 = 𝑄 = 1,

and 𝑛𝑅2∃,≺ ≤ 𝑛𝑅 if and only if 2(𝑋𝐼 − 1) +𝑄 ≤ 5. If actions in ≺ are not ordered as in the plan (2), the bound needed by Π𝑆,≺ and
Π𝑅2∃,≺ increase. In the worst case, Π𝑆,≺ (resp. Π𝑅2∃,≺) admits a solution with a bound equal to the one needed by Π𝑅 (resp. Π𝑆), and
this happens when actions in ≺ are in reverse order wrt the plan (2).

5. Implementation and experimental analysis

In this section, we first experimentally analyse the performance of the basic procedure in Algorithm 1 when

1. exploiting the pattern selection procedure used in [2] enhanced with the results presented in Section 3.3 (Section 5.1), and
2. implementing the strategies presented in Section 3.4 in order to return plans with higher quality (Section 5.2).

Then, we perform a comparative analysis with all the publicly available state-of-the-art symbolic (Section 5.3) and search-based (Sec-
tion 5.4) numeric planners, summarizing the results with all the considered planners in the final Section 5.5.

For the experiments, we adopted the same settings used in the Agile Track of the 2023 Numeric ipc [13]. In particular, we
considered all its 20 domains and 20 problems per domain, to which we added 20 problems of the LineExchange domain. The
added domain generalizes Example 1 by having 𝑁 = 4 robots on a line which can exchange items while staying in their adjacent
segments of length 𝐷 = 2. In particular, in the initial state, the first robot has 𝑄 ∈ ℕ0 items and the goal is to transfer all the items
to the last robot in the line. For every problem, we set the time limit to 5 min, on an Intel Xeon Platinum 8000 3.1GHz with 8 GB of
RAM. We performed some experiments with a time limit of 30 min and obtained the same qualitative results.

We summarize the results in every domain via tables, in which

1. Both the names of the solvers and of the domains are abbreviated to save space. Further, each domain is labelled with “S” (for
simple) if every numeric effect of each action either increases or decreases the assigned variable by a constant, and is labelled
with “L” (for linear), otherwise.

Artiϧcial Intelligence 352 (2026) 104482

18

M. Cardellini, E. Giunchiglia and M. Maratea

2. For each domain in the table, we always show the number of problems solved (Sub-table Solved), and dummyTXdummy– the
average time needed to find a solution, counting the time limit when a solution could not be found (Sub-table Time). A “-” indicates
that no problem in the domain was solved with the given resources.

3. The best results are in bold. We also include a final line, labelled Best, reporting on how many of the considered 420 problems
each planner obtained the best result. 11

All the considered symbolic planners have been run using Z3 v4.12.2 [20] for checking the satisfiability of the formula (9),
represented as a set of assertions in the smtlib format [16]. All our systems have been implemented as part of the patty system,
and are publicly available12, together with the LineExchange domain and the problems used in this paper. In our systems, each
lifted input domain specified in pddl2.1 is first grounded by instantiating its variables over the objects defined in the corresponding
problem, considering all possible combinations. The resulting numeric planning problem is then simplified by eliminating actions
that can never be executable, since they contain a precondition that is falsified in the initial state by variables that are never modified
by any action.

5.1. Impact of the computing pattern procedure

As already discussed in the previous sections, how the pattern is selected can have a dramatic impact on the performance of the
spp procedure. Assuming the existence of a plan of length 𝑛, the spp procedure in Algorithm 1 needs from 1 to 𝑛 iterations before
finding it, how many depending on the characteristics of the planning problem and of the selected pattern.

In our previous paper [2], the pattern was selected by exploiting the arpg construction informally presented in Section 3.3. Here
we extend the system PattyA implementing such a strategy, by ensuring that action 𝑎1 precedes action 𝑎2 in the pattern when both
are at the same arpg level, and either 𝑎2 blocks 𝑎1, or 𝑎1 supports 𝑎2 without 𝑎2 interfering with the executability of 𝑎1. We refer to
the resulting system as PattyE. Both PattyA and PattyE lexicographically order any two actions 𝑎1 and 𝑎2 whenever they are not
ordered according to the previous criteria. 13 Finally, for each problem, we evaluated five different versions of patty, each using
a different randomly generated pattern. To summarize patty’s performance across all problems and domains with these random
patterns, we followed these steps:

1. for each problem, we sorted the five obtained results by solving time, and
2. selected the first, third, and fifth results to represent the performance of the three virtual planners Patty𝑚𝑖𝑛R , Patty𝑚𝑒𝑑R , and
Patty𝑚𝑎𝑥R , respectively. Patty𝑚𝑖𝑛R , Patty𝑚𝑒𝑑R , and Patty𝑚𝑎𝑥R results indicate the performance that can be expected in the best,
median, and worst case, when using a randomly generated pattern.

Table 1 summarizes the results. In the sub-tables/columns, beside the information on the number of solved problems and on the
average time, we report the average number of calls to the smt solver (Sub-table smt calls). To enable meaningful comparisons, the
number of smt solver calls was calculated considering only the problems solved by all the planners able to solve at least one problem
in the domain. We remind that the number of smt calls is equal to both the number 𝑛 of iterations and the number of times the
initially computed pattern ≺𝐼 needs to be concatenated to find a valid plan.

As it can be seen, the results align with the theoretical finding that PattyE dominates PattyA, as the latter never exhibits a lower
number of calls to the smt solver than the former. Further, the enhanced pattern computation of PattyE produces some effects on 6
out of the 12 domains, with problems requiring more than one call to the smt solver. Still, although PattyE dominates PattyA, the
latter solves more problems in two domains (balanced by PattyE’s superior results in three other domains). Indeed, for a problem in
each of these two domains, the smt solver manages to find a solution on PattyA encoding while it fails on PattyE encoding.

Considering also the performance of Patty𝑚𝑖𝑛R , Patty𝑚𝑒𝑑R and Patty𝑚𝑎𝑥R the following observations are in order:

1. on some domains (Like BlGrp (S) and Cnt (S)) the pattern selection does not have an impact: all the problems in these domains
are solved by concatenating the pattern just once, even when the pattern is randomly generated,

2. on some other domains (significantly, HPwr (S)) the pattern selection does have an impact: the arpg based pattern construction
is very productive, while the random generation of patterns is not,

3. yet on some other domains (and in particular, Drn (S)) the random generation of pattern seems to be better: indeed, on average
Drn (S) problems require more than 4 iterations to be solved, and exploiting a different pattern (even a randomly generated one),
likely from the second iteration on, leads to a lower number of calls to the smt solver (though not necessarily to best performance).

Overall, the pattern computation procedure used by PattyE (resp. PattyA) increments the number of solved problems by the
8.5%/12.9%/23.8% (resp. 6.6%/10.8%/21.6%) wrt Patty𝑚𝑖𝑛R /Patty𝑚𝑒𝑑R / Patty𝑚𝑎𝑥R . Not surprisingly, Patty𝑚𝑖𝑛R has the best time
performance on most problems: indeed, on the 259 problems that Patty𝑚𝑖𝑛R solves, it gets by construction the best time result out of
5 different runs.

11 For the number of solved problems, the last line is just the sum of the previous ones. Notice that the sum of the numbers in the last line do not
sum up to the total number of problems –as it could be expected– since some problems (𝑖) are not solved by any planner in the table, and/or (𝑖𝑖) are
solved with the same best result by more than one planner.
12 http://pattyplan.com
13 Here, differently from [2], we also introduced the lexicographic ordering to uniquely characterize the used pattern.

Artiϧcial Intelligence 352 (2026) 104482

19

http://pattyplan.com

M. Cardellini, E. Giunchiglia and M. Maratea

Table 1
Comparative analysis among PattyE, PattyA, Patty𝑚𝑖𝑛R , Patty𝑚𝑒𝑑R and Patty𝑚𝑎𝑥R .

 Solved (out of 20) Time (s) smt calls
 Domain PE PA Pmin

R P𝑚𝑒𝑑R Pmax
R PE PA Pmin

R P𝑚𝑒𝑑R Pmax
R PE PA Pmin

R P𝑚𝑒𝑑R Pmax
R

 BlGrp (S) 20 20 20 20 20 1.8 1.6 1.6 1.7 1.8 1.0 1.0 1.0 1.0 1.0
 Cnt (S) 20 20 20 20 20 0.9 0.9 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0
 Cnt (L) 20 20 20 20 17 1.1 0.9 11.2 34.4 105.2 1.0 1.0 1.9 1.9 1.9
 Del (S) 5 3 6 6 4 226.4 256.0 208.3 212.9 236.0 1.7 3.3 2.3 2.3 3.0
 Drn (S) 3 3 5 3 3 255.3 255.2 246.5 255.2 255.4 5.7 5.7 4.3 5.0 5.3
 Exp (S) 2 2 3 3 2 270.2 273.9 257.9 261.0 275.9 3.0 6.0 5.0 5.5 7.5
 Farm (S) 20 20 20 20 20 2.4 2.8 0.9 2.1 7.3 1.0 1.0 1.0 1.1 1.1
 Farm (L) 20 20 20 20 19 2.7 2.7 1.1 2.9 27.4 1.0 1.0 1.1 1.1 1.4
 HPwr (S) 20 20 1 – – 9.4 22.9 295.2 – – 1.0 1.0 7.0 – –
 Mrkt (L) – – – – – – – – – – – – – – –
 MPrime (S) 12 10 11 9 8 137.7 166.2 165.2 185.1 207.8 1.1 2.0 2.0 2.6 3.1
 PathM (S) 18 19 13 12 6 42.3 37.2 117.9 147.7 232.7 1.0 1.0 2.8 3.7 3.8
 PlWat (S) 6 6 7 6 6 215.3 217.8 198.0 212.8 214.4 7.6 7.6 6.8 7.8 8.8
 Rvr (S) 15 11 16 16 11 101.4 149.4 96.7 124.9 166.7 1.7 2.4 2.8 3.0 3.9
 Sail (S) 20 20 20 20 20 3.6 1.1 0.9 1.2 24.4 3.3 3.3 2.3 2.8 3.0
 Sail (L) 19 20 20 20 19 16.3 8.2 0.9 1.0 16.2 1.5 1.5 1.2 1.6 1.8
 Stlrs (S) 8 9 3 – – 210.5 193.1 265.8 – – 1.0 1.0 2.3 – –
 Sgr (S) 20 20 20 20 20 10.3 14.6 6.2 14.4 28.8 2.5 3.1 2.8 3.3 3.5
 Tpp (L) 2 2 3 3 2 270.2 270.2 259.3 260.4 270.6 2.5 2.5 2.5 2.5 3.5
 Zeno (S) 11 11 11 11 11 136.4 136.4 137.7 138.8 140.7 1.6 1.6 2.7 3.0 3.5
 Line (L) 20 20 20 20 19 1.2 8.3 2.1 3.4 50.4 2.8 4.7 4.4 5.0 5.7
 Best 281 276 259 249 227 85 86 134 2 0 256 197 156 115 92

Table 2
Comparative analysis between PattyE, PattyM, PattyI and PattyC. Each domain is labeled with S (for
simple) if every numeric effect of each action either increases or decreases by a constant the assigned variable,
and with L (for linear), otherwise. In the table, names have been abbreviated to save space. See [13] for more
details. Best results are in bold.

 Solved (out of 20) Time (s) Plan length
 Domain PE PM PI PC PE PM PI PC PE PM PI PC

 BlGrp (S) 20 20 19 20 1.8 32.1 2.5 8.8 626 226 279 609
 Cnt (S) 20 19 20 20 0.9 34.4 1.3 5.1 533 352 408 496
 Cnt (L) 20 11 14 20 1.1 144.6 140.1 1.1 52 26 31 34
 Del (S) 5 3 5 5 226.4 255.4 214.4 226.5 19 16 17 16
 Drn (S) 3 3 3 3 255.3 256.5 255.3 255.3 25 12 12 14
 Exp (S) 2 3 2 2 270.2 253.4 270.2 270.3 38 28 28 28
 Farm (S) 20 12 19 20 2.4 154.8 49.5 7.7 740 275 339 382
 Farm (L) 20 4 15 20 2.7 265.0 108.0 15.8 412 16 178 386
 HPwr (S) 20 4 18 20 9.4 269.8 54.5 15.5 56 32 38 40
 Mrkt (L) – – – – – – – – – – – –
 MPrime (S) 12 8 10 12 137.7 194.5 151.7 136.9 53 8 8 12
 PathM (S) 18 6 6 17 42.3 237.8 211.0 92.9 684 124 166 245
 PlWat (S) 6 4 6 6 215.3 255.2 217.4 214.8 301 151 196 291
 Rvr (S) 15 6 15 15 101.4 207.5 95.6 98.0 65 16 16 18
 Sail (S) 20 8 13 20 3.6 203.1 149.3 29.9 932 435 760 842
 Sail (L) 19 8 19 19 16.3 221.7 44.5 22.4 355 59 194 208
 Stlrs (S) 8 1 – 4 210.5 295.5 – 247.0 7.0k 26 – 135
 Sgr (S) 20 10 19 20 10.3 170.5 10.2 10.6 47 20 26 27
 Tpp (L) 2 2 2 2 270.2 272.3 270.2 270.1 13 8 10 12
 Zeno (S) 11 10 10 11 136.4 147.7 143.7 136.5 22 15 18 18
 Line (L) 20 19 20 20 1.2 6.3 1.7 3.0 399 329 329 337
 Best 281 161 235 275 180 9 17 83 24 161 124 69

5.2. Quality of the computed plan

As discussed in Section 3.4, it is indeed possible for the returned plan to contain redundant actions. To assess the extent of this
issue, we will compare PattyE with:

1. PattyM, i.e., PattyE where the solver is instructed to return a solution that minimizes the length of the returned plan, i.e., the
quantity ∑𝑘

𝑖=1 𝑎𝑖,

Artiϧcial Intelligence 352 (2026) 104482

20

M. Cardellini, E. Giunchiglia and M. Maratea

2. PattyI, i.e., PattyE where the first computed model 𝜇 is used to find an irredundant plan, i.e., a plan corresponding to a model
that minimizes ∑𝑘

𝑖=1 𝑎𝑖 while also satisfying ∧𝑘𝑖=1𝑎𝑖 ≤ 𝜇(𝑎𝑖),
3. PattyC, i.e., PattyE where, from the first computed plan, redundant actions are removed employing the Action Elimination
(ae) Algorithm, quadratic in the length of the plan, presented in Algorithm 1 of [24] – originally introduced by [26] and later
rediscovered and formulated by [27] – cast for numeric planning.

PattyM and PattyI are thus guaranteed to return a ≺-optimal and a 𝜋-optimal plan, respectively, as discussed in Section 3.4. The
results are in Table 2.

The table shows the number of solved problems and average time, and the average length of the returned plan (Sub-table Plan
length), the latter computed considering only the problems solved by all the considered planners. Notice that when a plan is returned,
PattyE, PattyM, PattyI and PattyC use the same pattern.

As it can be seen from the table, for every domain

1. the average length of the computed plan is the smallest for PattyM and the highest for PattyE,
2. vice versa, the average number of solved problems is the highest for PattyE and the lowest for PattyM for all domains except
Exp (S), where PattyM is able to solve one more problem than the others, (which is also ≺-optimal),

3. the coverage of PattyC is almost identical to the coverage of PattyE, except for the Stlrs (S) domain, where the plan firstly
returned by PattyE is very long (7k actions) causing PattyC to reach the 5min timeout, due to the ae algorithm, quadratic in
the length of the plan,

4. the difference between the time needed by PattyE vs PattyI varies between being (almost) null (for DRN (S)) and very significant
(e.g., for CnT (L)). This is similar for PattyE and PattyC, where the difference in time is proportional to the plan length. Occa-
sionally, a shorter time than PattyE for PattyI, PattyM, PattyC is reported, which can be attributed to the varying performance
of the smt solver, even when considering the same problem.

Depending on the domain, the reduction in the length of the returned plan varies between being marginal (see, e.g., Del (S)) and
very significant (see, e.g., Sail (L), Stlrs (S)).

We recall that both PattyM and PattyI are guaranteed to return an irredundant plan. This necessitates proving the non-existence
of any other plan which is a subsequence of the given one. PattyC instead, is not guaranteed to return an irredundant plan. However,
in some domains – like Rvr (S) or MPrime (S) –, the plans produced are still of good quality, while maintaining the coverage and
time.

5.3. Comparative analysis to other SOTA symbolic planners

We compared our planner PattyE to the three planning as satisfiability planners Springroll (based on the rolled-up Π𝑅 encoding
[6]), the version 𝑅2∃ of Patty computing the planning as satisfiability 𝑅2∃ ≺-encoding Π𝑅2∃,≺, and OMTPlan, based on the Π𝑆
standard encoding, optimized to prune useless variables [19]. OMTPlan participated and ranked second in the 2023 ipc. As an
ablation study, we also implemented a version of 𝑅2∃ inside Patty where action variables are represented as non-negative integers,
and thus can be rolled: we dubbed this technique Rolled Relaxed-Relaxed ∃ step (𝑅3∃). The results are in Table 3. In the table, besides
the number of solved problems and average time, we show: the number of calls to the smt solver, the number of variables (Sub-table
Variables) and clauses (Sub-table Clauses) of the encoding when a solution is found. The last three numbers have been computed
considering the problems solved by all the symbolic planners able to solve at least one problem in the domain.

Considering the table, three main observations are in order. First, PattyE always finds a solution with a number of calls to
the smt solver which is never higher than the ones needed by the other considered symbolic planners (as theoretically established
by Theorem 11). Consequently, PattyE produces formulas with (far) fewer variables and clauses than 𝑅2∃, 𝑅3∃, OMTPlan and
SpringRoll, when the plan is found. The lower number of variables and clauses of PattyE is also due to the particular encoding in
which no variables representing the intermediate states are used.

Second, by looking at the performances of PattyE vs 𝑅3∃, we show that our approach is not simply an agglomerate of the 𝑅2∃
[8] and of the rolling [6] approaches. In fact, our approach indeed incorporates the two ideas but actually improves on them. In the
pattern approach, for each action 𝑎𝑖 in the pattern ≺ = 𝑎1;… ; 𝑎𝑘 the expression 𝜎𝑖(𝑣) denotes the value of the variable 𝑣 as a function
of the state and action variables in  ∪ {𝑎1, 𝑎2,… , 𝑎𝑖} without adding extra variables. In the 𝑅2∃ approach, with the same order ≺,
instead, as shown in Section 4.3, an additional variable 𝑣𝑎𝑖 would have been added to the encoding. Avoiding using these additional
variables is very beneficial for PattyE, that uses far fewer variables than 𝑅2∃, 𝑅3∃, and SpringRoll, as shown by the subtables
concerning the variables and the clauses and reflected in the smaller coverage and the increased planning time.

Third, considering the sub-tables of solved problems and average time, PattyE outperforms all the other planners in almost every
domain: PattyE always solves more problems and in only two domains it exhibits a longer average solving time. Interestingly,

1. on some domains action rolling is important (as witnessed by the performance of SpringRoll on BlGrp (S), Farm (S) and
Sail (S)),

2. on some other domains it is important to allow for sequences of mutually interfering actions in a single step (as witnessed by 𝑅2∃
planner on Farm (L), Tpp (L), Zeno (S)),

3. in Sgr (S), OMTPlan has remarkably good performance compared to SpringRoll and 𝑅2∃ planner, likely thanks to its variable
pruning techniques, playing a role also in Zeno (S) (by comparison to SpringRoll).

Artiϧcial Intelligence 352 (2026) 104482

21

M. Cardellini, E. Giunchiglia and M. Maratea

Fig. 2. Number of problems solved (𝑥-axis) in a given time (𝑦-axis), by all the presented systems. PE stands for PattyE, and similarly for
PA/Pmin

R /P𝑚𝑒𝑑R /Pmax
R /PI/PM/PC. The different versions of patty are represented with solid lines. ENCT/EN/MetricFF/NFD/SR/OMT/𝑅2∃/𝑅3∃ stand

for the ENHSPCT/ENHSP/MetricFF/NFD/SpringRoll/OMTPlan/𝑅2∃/𝑅3∃ planners and are represented with dashed lines. In the legend, the
planners are listed in reverse order of when their curve intersects the timeout line and are in lexicographic order when they intersect at the same
point.

Finally, considering the plan length, PattyE has the shortest average plan length in five domains, three of which thanks to the fact
that it is the only system able to solve some of its problems. On the other domains, the difference in the plan length can be marginal
(as for Zeno (S)) or very significant (e.g., for Farm (L) and Sail (S)).

As discussed in Section 3.4, if rolling is not allowed (as it is for 𝑅2∃ and OMTPlan), the set of models of the respective encoding
is guaranteed to be finite, while this is not necessarily the case for PattyE and Springroll. When an encoding has infinitely many
models, PattyE and Springroll may return an arbitrarily long plan, as each model corresponds to a different plan. Further, as the
example in Section 3.4 shows, there can be cases in which our encoding can have infinitely many models while SpringRoll may not,
given that the latter does not allow executing mutually conflicting actions in a single step. Indeed, by disabling rolling and ensuring
that exactly one action is executed at each step, all symbolic planners are guaranteed to return an optimal plan with the minimum
possible number of actions (though this might be impractical since it will require making a number of smt calls equal to the plan
length).

5.4. Comparative analysis to other SOTA search-based planners

We compared our planner PattyE with the four search-based planners ENHSP [4], ENHSPCT [28], MetricFF [29] and Numer-
icFastDownward (NFD) [30]. NFD competed in the 2023 ipc, ranking first. The results are reported in Table 4. Here, besides the
number of solved problems and time, we also report the average length of the computed plans, as usual computed considering the
problems solved by all the planners able to solve at least one problem in the domain.

Considering the sub-tables with the performance data, PattyE solves the most problems in 13 domains, followed by ENHSPCT,
ENHSP, MetricFF, NFD in 10, 7, 4, 2, 0 domains, respectively. Overall, PattyE, ENHSPCT, ENHSP, NFD, MetricFF solve 281,
276, 222, 151 and 155 problems, respectively. As pointed out in [28], the problems in which PattyE performs better are those
with infinitely large state spaces (in which search-based methods are likely to get lost) and in which its pattern computation allows
finding relatively short rolled up plans. If the domain has mostly finite domain variables and requires long plans with multiple
non-consecutive executions of the same actions, then PattyE concatenates the initially computed pattern ≺𝐼 for 𝑛 > 1 times. As
𝑛 increases, the number of decision variables in the encoding increases. Further, ≺𝐼 is likely to provide limited guidance when
concatenated for 𝑛 > 1 times. By contrast, ENHSPCT exploitation of multi-queue search and also a portfolio of different heuristics
allow it to adapt its search mechanism to the specific domain and also the state currently at hand. The differences in the average
plan length between PattyE and the other considered planners is even more evident here: for average plan length, PattyE generates
shorter plans than the other systems in 3 domains, while ENHSPCT, ENHSP, NFD, and MetricFF lead in 10, 4, 9 and 7 domains,
respectively.

The fact that depending on the domain there can be significant differences between PattyE and the search-based planners,
highlights the complementary nature of these planners. For this reason, a very different picture can be obtained by considering a
different set of benchmarks.

5.5. Overall comparative analysis

The cactus plot in Fig. 2 summarizes the performance of all the systems we presented. The graph plots how many problems can be
solved in a given time. As it can be seen, all the different versions of patty have better performance than the other symbolic planning

Artiϧcial Intelligence 352 (2026) 104482

22

M. Cardellini, E. Giunchiglia and M. Maratea

Ta
bl
e 3

Co
m
pa
ra
tiv
e a
na
ly
si
s b
et
w
ee
n P

at
ty

E
 an

d t
he

 sy
m
bo
lic

 pl
an
ne
rs
 𝑅

2 ∃
, 𝑅

3 ∃
, O
M
TP
la
n
an
d S

pr
in
gr
o
ll
.

 Sol
ve
d (
ou
t o
f 2

0)
 Tim

e (
s)

 sm
t c
al
ls

 Pla
n l
en
gt
h

 Va
ri
ab
le
s

 Cla
us
es

 Do
m
ai
n

P E
R
2 ∃

R
3 ∃

O
M
T

SR
P E

R
2 ∃

R
3 ∃

O
M
T

SR
P E

R
2 ∃

R
3 ∃

O
M
T

SR
P E

R
2 ∃

R
3 ∃

O
M
T

SR
P E

R
2 ∃

R
3 ∃

O
M
T

SR
P E

R
2 ∃

R
3 ∃

O
M
T

SR

 Bl
G
rp

 (S
)

 20
 17

 20
 2

 20
 1.8

 83
.4

 8.3
 27
0.
2

 1.6
 1.0

 6.0
 1.0

 8.5
 1.0

 12
4

 22
 17
2

 60
 74

 40
 1.4

k
 25
0

 26
5

 40
 10
1

 1.7
k

 33
1

 77
6

 12
2

 Cn
t (
S)

 20
 11

 20
 18

 20
 0.9

 16
9.
2

 1.4
 92
.7

 0.9
 1.0

 13
.3

 1.0
 13
.3

 1.0
 16
4

 12
5

 25
8

 16
3

 11
2

 45
 7.6

k
 39
1

 61
9

 45
 11
4

 8.9
k

 48
2

 1.8
k

 13
7

 Cn
t (
L)

 20
 4

 20
 3

 6
 1.1

 24
0.
3

 2.5
 25
5.
3

 22
7.
6

 1.0
 1.7

 1.0
 5.3

 2.7
 10

 8
 1.4

k
 5

 7
 26

 20
8

 12
2

 12
2

 60
 58

 27
6

 16
6

 1.5
k

 29
7

 De
l (
S)

 5
 1

 3
 1

 –
 22
6.
4

 28
5.
7

 27
2.
2

 29
5.
6

 –
 1.0

 2.0
 1.0

 10
.0

 –
 10

 10
 11

 10
 –

 25
0

 15
.9
k

 6.9
k

 1.9
k

 –
 66
2

 16
.7
k

 7.4
k

 24
6.
0k

 –
 Dr
n (
S)

 3
 3

 3
 3

 3
 25
5.
3

 25
9.
0

 25
5.
5

 25
6.
3

 25
6.
3

 5.7
 8.3

 5.7
 12
.3

 9.7
 25

 14
 26

 12
 15

 14
2

 1.3
k

 93
8

 29
9

 23
2

 34
4

 1.6
k

 1.2
k

 5.1
k

 2.4
k

 Ex
p (
S)

 2
 –

 2
 2

 –
 27
0.
2

 –
 27
1.
5

 27
6.
2

 –
 3.0

 –
 3.0

 16
.0

 –
 38

 -
 37

 28
 –

 25
4

 –
 6.7

k
 1.1

k
 –

 61
2

 –
 7.4

k
 35
.2
k

 –
 Fa
rm

 (S
)

 20
 –

 20
 –

 20
 2.4

 –
 19
.5

 –
 1.3

 1.0
 –

 1.0
 –

 2.2
 78
6

 –
 89
4

 –
 33
4

 63
 –

 24
0

 -
 13
4

 12
0

 –
 32
3

 -
 1.3

k
 Fa
rm

 (L
)

 20
 2

 20
 1

 –
 2.7

 27
0.
2

 25
.5

 28
6.
2

 –
 1.0

 8.0
 1.0

 12
.0

 –
 14
5

 14
 99

 19
 –

 19
 33
8

 37
 11
2

 –
 32

 46
0

 55
 54
5

 –
 HP
w
r (
S)

 20
 –

 10
 –

 –
 9.4

 –
 23
4.
3

 –
 –

 1.0
 –

 1.0
 –

 –
 97

 –
 11
6

 –
 –

 44
4

 –
 7.9

k
 –

 –
 78
8

 –
 8.3

k
 –

 –
 Mr

kt
 (L
)

 –
 –

 –
 –

 –
 –

 –
 –

 –
 –

 –
 –

 –
 –

 –
 –

 –
 –

 –
 –

 –
 –

 –
 –

 –
 –

 –
 –

 –
 –

 MP
ri
m
e (
S)

 12
 5

 5
 6

 10
 13
7.
7

 23
3.
2

 23
8.
9

 22
9.
6

 17
4.
2

 1.2
 2.2

 1.2
 4.2

 5.2
 54

 7
 63

 8
 34

 36
4

 36
.3
k

 15
.3
k

 1.1
k

 1.4
k

 91
8

 37
.4
k

 15
.9
k

 86
.0
k

 59
.5
k

 Pa
th
M
 (S
)

 18
 1

 5
 3

 1
 42
.3

 28
6.
1

 24
3.
6

 26
2.
4

 28
6.
0

 1.0
 6.0

 1.0
 9.0

 3.0
 57

 12
 1.8

k
 28

 57
 18
6

 19
.2
k

 2.8
k

 98
6

 41
6

 31
8

 20
.0
k

 3.0
k

 5.2
k

 1.4
k

 Pl
W
at

 (S
)

 6
 -

 5
 –

 –
 21
5.
3

 –
 24
2.
0

 –
 –

 7.6
 –

 7.6
 –

 –
 31
8

 –
 38
5

 –
 –

 36
3

 –
 4.0

k
 –

 –
 99
7

 –
 4.9

k
 –

 –
 Rv
r (
S)

 15
 8

 6
 7

 11
 10
1.
4

 20
2.
6

 21
8.
9

 23
2.
6

 18
1.
8

 1.3
 2.0

 1.3
 7.8

 7.8
 58

 14
 55

 14
 17

 33
9

 21
.2
k

 12
.1
k

 1.2
k

 1.6
k

 69
7

 21
.7
k

 12
.6
k

 10
0.
6k

 53
.1
k

 Sa
il
 (S
)

 20
 –

 20
 –

 20
 3.6

 –
 26
.1

 –
 5.5

 3.3
 –

 3.3
 –

 7.3
 6.1

k
 –

 17
.6
k

 –
 1.2

k
 13
5

 –
 1.3

k
 –

 28
6

 26
6

 –
 1.4

k
 –

 2.1
k

 Sa
il
 (L
)

 19
 –

 20
 1

 –
 16
.3

 –
 1.6

 28
5.
8

 –
 1.0

 –
 1.0

 13
.0

 –
 16
1

 –
 4.1

k
 59

 –
 84

 –
 89
8

 87
4

 –
 20
0

 –
 1.1

k
 5.8

k
 –

 St
lr
s (
S)

 8
 –

 –
 –

 –
 21
0.
5

 –
 –

 –
 –

 1.0
 –

 –
 –

 –
 38
.3
k

 –
 –

 –
 –

 1.4
k

 –
 –

 –
 –

 2.9
k

 –
 –

 –
 –

 Sg
r (
S)

 20
 1

 9
 18

 –
 10
.3

 28
8.
2

 21
5.
3

 11
3.
7

 –
 2.0

 2.0
 2.0

 5.0
 –

 32
 29

 43
 18

 –
 81
4

 55
.5
k

 40
.9
k

 1.7
k

 –
 2.0

k
 56
.9
k

 42
.4
k

 92
.4
k

 –
 Tp
p (
L)

 2
 2

 2
 –

 –
 27
0.
2

 27
1.
9

 27
1.
6

 –
 –

 2.5
 2.5

 2.5
 –

 –
 13

 10
 10

 –
 –

 23
7

 2.6
k

 3.0
k

 –
 –

 60
4

 3.0
k

 3.5
k

 –
 –

 Ze
no

 (S
)

 11
 9

 8
 7

 –
 13
6.
4

 17
4.
6

 19
5.
1

 20
9.
6

 –
 1.6

 1.6
 1.6

 5.3
 –

 17
 16

 16
 13

 -
 24
1

 7.0
k

 7.9
k

 93
1

 –
 70
0

 7.4
k

 8.4
k

 74
.8
k

 –
 Lin

e (
L)

 20
 –

 20
 –

 5
 1.2

 –
 2.0

 –
 26
2.
4

 3.0
 –

 3.0
 –

 26
.0

 11
0

 –
 11
2

 –
 15
8

 16
1

 –
 1.4

k
 –

 1.1
k

 38
1

 –
 1.6

k
 –

 4.2
k

 Bes
t

 28
1

 64
 21
8

 72
 11
6

 22
4

 0
 14

 5
 39

 28
1

 17
 21
8

 0
 43

 13
0

 42
 23

 36
 63

 28
1

 0
 1

 0
 43

 28
1

 0
 1

 0
 0

Artiϧcial Intelligence 352 (2026) 104482

23

M. Cardellini, E. Giunchiglia and M. Maratea

Table 4
Comparative analysis between PattyE and the search-based planners ENHSP, ENHSPCT, MetricFF and NumericFastDownward(NFD).
A “*” indicates that no problem was solved by all the planners capable of solving at least one problem in the domain.

 Solved (out of 20) Time (s) Plan Length
 Domain PE ENCT EN NFD FF PE ENCT EN NFD FF PE ENCT EN NFD FF

 BlGrp (S) 20 14 16 – 2 1.8 117.2 81.5 – 270.2 124 22 22 – 24
 Cnt (S) 20 10 12 11 15 0.9 163.8 133.8 149.8 95.7 128 85 85 84 84
 Cnt (L) 20 12 10 6 8 1.1 142.3 170.9 214.0 180.0 30 16 29 16 13
 Del (S) 5 14 13 9 18 226.4 117.1 121.7 165.2 41.2 25 28 31 35 25
 Drn (S) 3 18 16 16 2 255.3 55.4 62.9 66.0 268.4 16 7 8 7 7
 Exp (S) 2 6 6 3 – 270.2 224.0 212.3 253.7 – 36 48 72 54 –
 Farm (S) 20 20 20 15 9 2.4 1.8 0.9 85.3 188.1 701 292 292 292 341
 Farm (L) 20 20 18 11 15 2.7 2.5 48.6 151.2 80.5 864 254 34 21 34
 HPwr (S) 20 20 2 1 1 9.4 4.6 270.3 285.1 285.0 64 16 20 35 16
 Mrkt (L) - 20 4 – – – 35.0 259.3 – – – 424 594 – –
 MPrime (S) 12 17 17 14 17 137.7 74.6 68.1 127.2 45.1 63 7 9 7 8
 PathM (S) 18 3 2 1 10 42.3 262.8 272.2 284.2 154.9 57 12 18 12 14
 PlWat (S) 6 20 16 14 3 215.3 41.1 101.3 167.2 268.3 285 235 429 393 455
 Rvr (S) 15 12 8 4 10 101.4 143.7 197.4 240.8 133.3 34 13 33 9 9
 Sail (S) 20 20 20 10 1 3.6 5.0 2.0 150.3 285.0 174 174 174 174 179
 Sail (L) 19 2 2 15 8 16.3 270.8 270.6 96.8 182.8 * * * * *
 Stlrs (S) 8 2 1 - 4 210.5 279.0 288.6 - 243.8 * * * - *
 Sgr (S) 20 11 8 4 13 10.3 144.5 182.5 245.7 122.5 * * * * *
 Tpp (L) 2 7 3 2 2 270.2 212.3 255.2 270.0 266.7 13 11 11 5 9
 Zeno (S) 11 17 19 9 11 136.4 89.5 28.1 172.5 135.0 20 15 14 21 14
 Line (L) 20 11 9 6 6 1.2 149.5 175.4 235.0 211.6 211 171 276 234 187
 Best 281 276 222 151 155 136 62 41 37 94 65 162 96 85 92

systems. The better results achieved even by PattyM/PattyI–guaranteed to return irredundant plans– and Patty𝑚𝑎𝑥R –representing
patty’s lowest performance across 5 runs per problem with a randomly generated pattern– demonstrate the robustness of our ap-
proach. All our systems except for PattyM have also better performance than all the search-based planners, except for ENHSPCT,
which solves roughly the same number of problems as PattyE and PattyA.

Overall, of the 420 problems we considered, PattyE successfully solved 281, while ENHSPCT, ENHSP and SpringRoll solved
276, 221 and 116, respectively. ENHSPCT and SpringRoll are the top performers among the search-based and the other symbolic
planners, respectively.

6. Conclusions and future work

We proposed Symbolic Pattern Planning (SPP), a novel approach for solving automated planning problems in deterministic do-
mains. A pattern is a sequence of actions, each of which can be executed for 0 or more times. The core idea of SPP is to encode as
a formula the state that results from executing the actions in the pattern zero or more times, and then impose the conditions of the
initial and goal states. Assuming the correctness of the encoding, by iteratively extending the pattern by adding a complete sequence
of actions, we obtain a correct and complete procedure for planning.

On the theoretical side, we proved that when SPP is cast in the planning as satisfiability framework, our encoding generalizes
both the 𝑅2∃ encoding by allowing for action rolling (as in the 𝑅 encoding), and the rolled-up 𝑅 encoding by allowing for actions
with interfering preconditions and effects (as in the 𝑅2∃ encoding). This generalization leads the pattern encoding to often find plans
with a lower number of calls to the smt solver.

Experimentally, we considered the basic SPP procedure in which an initial elementary and complete pattern is computed at the
beginning and then iteratively used to extend the current pattern until a valid plan is found. We considered the benchmarks in
the 2023 ipc, numeric track and showed that the resulting planner patty performs better than all the currently available symbolic
planners, and comparatively well also when considering search-based planners.

This work can be extended along several lines. First, as outlined in the introduction, it is possible to apply the SPP idea to
any deterministic planning problem for which it is possible to define a formula encoding the state resulting from the execution of
each action in the pattern for 0 or more times. One possibility is thus to consider more expressive languages for planning domain
specification, such as pddl level 3 or level 4 [1]. Yet another possibility is to specialize the encoding that we propose to deal with
classical planning problems, e.g., formalized in pddl level 1. Such a specialization is needed to compete with the highly tuned current
classical planners. Finally, it is clear that the simple SPP procedure that we defined and experimentally tested in this paper, can be
improved in many ways. The possibility to define and use a different pattern at each iteration seems the first natural step. Here,
the problem is to define when and how to recompute the pattern, given the previously defined and used patterns. We are currently
working on all these three lines of research.

Artiϧcial Intelligence 352 (2026) 104482

24

M. Cardellini, E. Giunchiglia and M. Maratea

CRediT authorship contribution statement

Matteo Cardellini: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Resources, Method-
ology, Formal analysis, Data curation, Conceptualization; Enrico Giunchiglia: Writing – review & editing, Writing – original draft,
Validation, Supervision, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Con-
ceptualization; Marco Maratea: Writing – review & editing, Writing – original draft, Validation, Supervision, Methodology.

Data availability

The link to github is available in the paper.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests:
Enrico Giunchiglia reports financial support was provided by European Union. Marco Maratea reports financial support was provided
by European Union. If there are other authors, they declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Enrico Giunchiglia acknowledges the financial support from PNRR MUR Project PE0000013 FAIR “Future Artificial Intelligence
Research”, funded by the European Union - NextGenerationEU, CUP J33C24000420007, and from Project PE00000014 “SEcurity and
RIghts in the CyberSpace”, CUP D33C22001300002. Marco Maratea has been partially supported by the MUR under PNRR project
FAIR “Future AI Research”, CUP H23C22000860006.

References

[1] M. Fox, D. Long, PDDL2.1: an extension to PDDL for expressing temporal planning domains, J. Artif. Intell. Res. 20 (2003) 61-124. https://doi.org/10.1613/
jair.1129

[2] M. Cardellini, E. Giunchiglia, M. Maratea, Symbolic numeric planning with patterns, in: M.J. Wooldridge, J.G. Dy, S. Natarajan (Eds.), Thirty-Eighth AAAI
Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium
on Educational Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, AAAI Press, 2024, pp. 20070–20077. https://doi.org/
10.1609/AAAI.V38I18.29985.

[3] C. Barrett, C. Tinelli, Satisfiability Modulo Theories, Handbook of Model Checking (2018) 305–343.
[4] E. Scala, P. Haslum, S. Thiebaux, M. Ramirez, Interval-based relaxation for general numeric planning, in: Proceedings of the Twenty-second European Conference

on Artificial Intelligence, 2016, p. 655-663. https://doi.org/10.3233/978-1-61499-672-9-655.
[5] H.A. Kautz, B. Selman, Planning as satisfiability, in: B. Neumann (Ed.), 10th European Conference on Artificial Intelligence, ECAI 92, Vienna, Austria, August

3-7, 1992. Proceedings, John Wiley and Sons, 1992, pp. 359–363.
[6] E. Scala, M. Ramirez, P. Haslum, S. Thiebaux, Numeric planning with disjunctive global constraints via SMT, Proceedings of the International Conference on

Automated Planning and Scheduling 26 (2016) 276-284. https://doi.org/10.1609/icaps.v26i1.13766
[7] T. Balyo, Relaxing the relaxed exist-step parallel planning semantics, in: 2013 IEEE 25th International Conference on Tools with Artificial Intelligence, IEEE,

Herndon, VA, USA, 2013, pp. 865–871. http://ieeexplore.ieee.org/document/6735342/. https://doi.org/10.1109/ICTAI.2013.131
[8] M. Bofill, J. Espasa, M. Villaret, The RANTANPLAN planner: system description, Knowl. Eng. Rev. 31 (5) (2016) 452-464. https://doi.org/10.1017/

S0269888916000229
[9] M. Cardellini, E. Giunchiglia, Temporal numeric planning with patterns, Proc. AAAI Conf. Artif. Intell. 39 (25) (2025) 26481–26489. https://doi.org/10.1609/

aaai.v39i25.34848.
[10] V. Vidal, The YAHSP planning system: forward heuristic search with lookahead plans analysis, in: International Planning Competition, 2004, p. 56.
[11] D. Alarnaouti, F. Percassi, M. Vallati, An extensive empirical analysis of macro-actions for numeric planning, in: International Conference of the Italian Association

for Artificial Intelligence, Springer, 2024, pp. 23–36.
[12] L. Bonassi, A.E. Gerevini, E. Scala, Planning with qualitative action-trajectory constraints in PDDL, in: L. De Raedt (Ed.), Proceedings of the Thirty-First Inter-

national Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, ijcai.org, 2022, pp. 4606–4613. https://doi.org/10.24963/
IJCAI.2022/639.

[13] A. Taitler, R. Alford, J. Espasa, G. Behnke, D. Fišer, M. Gimelfarb, F. Pommerening, S. Sanner, E. Scala, D. Schreiber, J. Segovia-Aguas, J. Seipp, The 2023
International Planning Competition, AI Mag. n/a (n/a) (n.d.). https://onlinelibrary.wiley.com/doi/pdf/10.1002/aaai.12169https://doi.org/10.1002/aaai.12169

[14] F. Leofante, E. Giunchiglia, E. Ábráham, A. Tacchella, Optimal planning modulo theories, in: Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, International Joint Conferences on Artificial Intelligence Organization, Yokohama, Japan, 2020, p. 4128-4134. https://www.ijcai.org/
proceedings/2020/571. https://doi.org/10.24963/ijcai.2020/571.

[15] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Pearson, 3 edition, 2010.
[16] C. Barrett, P. Fontaine, C. Tinelli, The satisfiability modulo theories library (SMT-LIB), 2016, (www.SMT-LIB.org). Accessed: 2024-01-06.
[17] J. Rintanen, K. Heljanko, I. Niemelä, Planning as satisfiability: parallel plans and algorithms for plan search, Artif. Intell. 170 (12-13) (2006) 1031–1080.

https://doi.org/10.1016/j.artint.2006.08.002.
[18] P. Bercher, P. Haslum, C. Muise, A survey on plan optimization, in: Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence,

IJCAI 2024, Jeju, South Korea, August 3-9, 2024, ijcai.org, 2024, pp. 7941–7950. https://www.ijcai.org/proceedings/2024/879.
[19] F. Leofante, OMTPlan: a tool for optimal planning modulo theories, J. Satisf. Boolean Model. Comput. 14 (1) (2023) 17–23. https://doi.org/10.3233/SAT-220001
[20] L. De Moura, N. Bjørner, Z3: an efficient SMT solver, in: International Conference on Tools and Algorithms for the Construction and Analysis of Systems, Springer,

2008, pp. 337–340.
[21] E. Giunchiglia, M. Maratea, Planning as satisfiability with preferences, in: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, July

22-26, 2007, Vancouver, British Columbia, Canada, AAAI Press, 2007, pp. 987–992. http://www.aaai.org/Library/AAAI/2007/aaai07-157.php.

Artiϧcial Intelligence 352 (2026) 104482

25

https://doi.org/10.1613/jair.1129
https://doi.org/10.1613/jair.1129
https://doi.org/10.1613/jair.1129
https://doi.org/10.1613/jair.1129
https://doi.org/10.1609/AAAI.V38I18.29985
https://doi.org/10.1609/AAAI.V38I18.29985
https://doi.org/10.1609/AAAI.V38I18.29985
https://doi.org/10.1609/AAAI.V38I18.29985
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0003
https://doi.org/10.3233/978-1-61499-672-9-655
https://doi.org/10.3233/978-1-61499-672-9-655
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0005
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0005
https://doi.org/10.1609/icaps.v26i1.13766
https://doi.org/10.1609/icaps.v26i1.13766
https://doi.org/10.1109/ICTAI.2013.131
https://doi.org/10.1109/ICTAI.2013.131
https://doi.org/10.1017/S0269888916000229
https://doi.org/10.1017/S0269888916000229
https://doi.org/10.1017/S0269888916000229
https://doi.org/10.1017/S0269888916000229
https://doi.org/10.1609/aaai.v39i25.34848
https://doi.org/10.1609/aaai.v39i25.34848
https://doi.org/10.1609/aaai.v39i25.34848
https://doi.org/10.1609/aaai.v39i25.34848
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0010
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0011
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0011
https://doi.org/10.24963/IJCAI.2022/639
https://doi.org/10.24963/IJCAI.2022/639
https://doi.org/10.24963/IJCAI.2022/639
https://doi.org/10.24963/IJCAI.2022/639
https://onlinelibrary.wiley.com/doi/pdf/10.1002/aaai.12169
https://doi.org/10.1002/aaai.12169
https://doi.org/10.1002/aaai.12169
https://www.ijcai.org/proceedings/2020/571
https://www.ijcai.org/proceedings/2020/571
https://doi.org/10.24963/ijcai.2020/571
https://doi.org/10.24963/ijcai.2020/571
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0015
www.SMT-LIB.org
https://doi.org/10.1016/j.artint.2006.08.002
https://doi.org/10.1016/j.artint.2006.08.002
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0018
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0018
https://www.ijcai.org/proceedings/2024/879
https://doi.org/10.3233/SAT-220001
https://doi.org/10.3233/SAT-220001
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0020
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0020
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0021
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0021

M. Cardellini, E. Giunchiglia and M. Maratea

[22] A. Cimatti, A. Griggio, B.J. Schaafsma, R. Sebastiani, The MathSAT5 SMT solver, in: N. Piterman, S.A. Smolka (Eds.), Tools and Algorithms for the Construction
and Analysis of Systems - 19th International Conference, TACAS 2013, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, 7795 of Lecture Notes in Computer Science, Springer, 2013, pp. 93–107. https://doi.org/10.1007/
978-3-642-36742-7_7.

[23] T. Balyo, L. Chrpa, A. Kilani, On different strategies for eliminating redundant actions from plans, in: Proceedings of the International Symposium on Combina-
torial Search, 5, 2014, pp. 10–18.

[24] L. Chrpa, On speeding up methods for identifying redundant actions in plans, in: Proceedings of the International Conference on Automated Planning and
Scheduling, 32, 2022, pp. 252–260.

[25] M. Bofill, J. Espasa, M. Villaret, Relaxed exists-step plans in planning as SMT, in: C. Sierra (Ed.), Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, ijcai.org, 2017, pp. 563–570. https://doi.org/10.24963/ijcai.2017/79.

[26] E. Fink, Q. Yang, Formalizing plan justifications, in: Proceedings of the Ninth Conference of the Canadian Society for Computational Studies of Intelligence,
1992, pp. 1–9.

[27] H. Nakhost, M. Müller, Action elimination and plan neighborhood graph search: two algorithms for plan improvement, in: Proceedings of the International
Conference on Automated Planning and Scheduling, 20, 2010, pp. 121–128.

[28] D.Z. Chen, S. Thiébaux, Novelty heuristics, multi-queue search, and portfolios for numeric planning, in: A. Felner, J. Li (Eds.), Seventeenth International Sym-
posium on Combinatorial Search, SOCS 2024, Kananaskis, Alberta, Canada, June 6-8, 2024, AAAI Press, 2024, pp. 203–207. https://doi.org/10.1609/SOCS.
V17I1.31559.

[29] J. Hoffmann, The metric-FF planning system: translating “ignoring delete Lists” to numeric state variables, J. Artif. Intell. Res. 20 (2003) 291–341.
[30] R. Kuroiwa, A. Shleyfman, J.C. Beck, LM-Cut heuristics for optimal linear numeric planning, in: Proceedings of the International Conference on Automated

Planning and Scheduling, 32, 2022, pp. 203–212.

Artiϧcial Intelligence 352 (2026) 104482

26

https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0023
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0023
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0024
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0024
https://doi.org/10.24963/ijcai.2017/79
https://doi.org/10.24963/ijcai.2017/79
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0026
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0026
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0027
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0027
https://doi.org/10.1609/SOCS.V17I1.31559
https://doi.org/10.1609/SOCS.V17I1.31559
https://doi.org/10.1609/SOCS.V17I1.31559
https://doi.org/10.1609/SOCS.V17I1.31559
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0029
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0030
http://refhub.elsevier.com/S0004-3702(26)00008-1/sbref0030

	Symbolic pattern planning
	1 Introduction
	2 Preliminaries
	2.1 Numeric planning in pddl 2.1
	2.2 Satisfiability modulo theories (smt)

	3 Symbolic pattern planning
	3.1 A simple SPP procedure
	3.2 A correct and complete SPP encoding for numeric planning problems
	3.3 Pattern computation
	3.3.1 Improving patterns by removing action occurrences
	3.3.2 Improving patterns by swapping action occurrences

	3.4 Plan quality

	4 Relation to planning as satisfiability encodings
	4.1 Planning as satisfiability
	4.2 Rolled-up and standard encodings
	4.3 Relaxed-relaxed (R2) encoding
	4.4 Relationships among the standard, rolled-up, relaxed-relaxed exists and pattern encodings

	5 Implementation and experimental analysis
	5.1 Impact of the computing pattern procedure
	5.2 Quality of the computed plan
	5.3 Comparative analysis to other SOTA symbolic planners
	5.4 Comparative analysis to other SOTA search-based planners
	5.5 Overall comparative analysis

	6 Conclusions and future work

