
Doctoral Dissertation

National Doctoral Program in Artificial Intelligence (37th cycle)

Symbolic Pattern Planning

By

Matteo Cardellini

Supervisors:
Prof. E. Giunchiglia
Prof. M. Maratea
Prof. M. Vallati

Doctoral Examination Committee:
Dr. Nicola Gigante, Referee, Free University of Bolzano
Dr. Andrea Micheli, Referee, Fondazione Bruno Kessler
Prof. Stefano Di Carlo, Polytechnic University of Turin
Prof. Simon Parkinson, University of Huddersfield
Prof. Marco Roveri, University of Trento

Politecnico di Torino

2024

Declaration

I hereby declare that, the contents and organization of this dissertation
constitute my own original work and does not compromise in any way the
rights of third parties, including those relating to the security of personal
data.

Matteo Cardellini
2024

* This dissertation is presented in partial fulfillment of the requirements for
Ph.D. degree in the Graduate School of Politecnico di Torino (ScuDo).

What could the storyteller add to what the actor has already brought to life?

Abstract

Planning involves finding a sequence of actions – i.e., a plan – that allows
agents, operating within an environment, to reach a goal from a specified
initial condition. Different flavours of planning exist depending on how the
environment is represented: classical if it is represented only by propositional
variables, numeric if variables can also assume numeric values, temporal
if there is a concept of time, with actions having durations, and hybrid if
the environment can act on its own. A technique for planning is Planning
as Satisfiability, where one bounds the length of the plan by an integer
n, translates a planning problem into a propositional formula encoding all
possible plans up to length n, and checks for the satisfiability of the formula,
increasing n upon failure.

This thesis introduces a novel approach called Symbolic Pattern Planning
(SPP), based on Planning as Satisfiability. Given a planning problem, we
propose to construct a plan for it by first fixing a pattern –defined as an
arbitrary finite sequence of actions, roughly sketching an intuitive idea on
how the actions in the final plan should be ordered– and then encoding as a
formula the state resulting from the sequential execution of a subsequence of
the actions in the pattern, starting from an arbitrary initial state. By imposing
the conditions on the initial and goal states, we can check whether the pattern
allows determining a valid plan – i.e., the formula is satisfiable – or whether
the pattern needs to be extended and the procedure iterated until we find a
valid plan as a subsequence of the pattern. We ground our proposal in the
classical, numeric and temporal flavours of planning and prove the correctness
(any returned plan is valid) and completeness (if there exists a valid plan,
one will be returned) of the procedure. Moreover, for the three flavours,
we show that our encoding allows to determine a valid plan in a number of
iterations n which is never higher than the one needed by the state-of-the-art

v

planners for that flavour exploiting the planning as satisfiability approach.
On the experimental side, we ran an extensive analysis for the numerical and
temporal flavours, showing that the results validate the theoretical findings
and that our planner PATTY has excellent comparative performances.

Regarding the classical planning flavour, we consider it as a special case of
numeric planning – where there are no numeric variables – and we concen-
trate our attention to the special case of classical planning with conditional
effects, where effects, i.e., the way the environment changes after an action
in applied, can be conditional, meaning that their application depends on the
agent’s state before applying the action. This seemingly harmless modification
makes the problem much more difficult than classical planning, and requires
some non-trivial adjustments to the approach.

After presenting the SPP approach for all the aforementioned flavours, we
push the envelope further and overcome some of its limitation, i.e., how the
selection of a static pattern computed on the initial state can be detrimental
when searching for plans where the order between actions changes during
the plan. We show how to symbolically search for a valid plan by iteratively
extending (adding actions to) and simplifying (removing actions from) the
initially computed pattern, symbolically mimicking standard search-based
procedures for planning. Again, the proposed procedure is proven correct
and complete and, on the experimental side, it outperforms the previous SPP

approach.

Finally, we conclude the thesis with a discussion on how to apply SPP

techniques on the hybrid planning flavour and on an application domain,
the In-Station Train Dispatching Problem, i.e., the problem of planning the
movements of trains inside a railway station.

Contents

List of Figures ix

List of Tables x

List of Theorems xi

List of Algorithms xiii

1 Introduction on Planning 1
1.1 Planning . 1
1.2 Flavours of Planning . 2
1.3 Complexity of Planning . 6

1.3.1 Compilation Schemes 7
1.4 Satisfiability Modulo Theory 10

1.4.1 Satisfiability . 10
1.4.2 Theories . 10

1.5 Planning as Satisfiability . 11
1.6 Thesis Contribution . 13

2 SPP in Classical and Numeric Planning 15
2.1 Numeric Planning in PDDL2.1 15
2.2 Symbolic Pattern Planning . 19

2.2.1 A Simple SPP Procedure 19
2.2.2 A Correct and Complete SPP Encoding for Numeric

Planning Problems . 23
2.2.3 Pattern Computation 31
2.2.4 Plan Quality . 41

2.3 Relation to Planning as Satisfiability Encodings 44
2.3.1 Rolled-up and Standard Encodings 45

Contents vii

2.3.2 Relaxed-Relaxed ∃ (R2∃) Encoding 46
2.3.3 Relationships Among the Standard, Rolled-up, Relaxed-

Relaxed Exists and Pattern Encodings 48
2.4 Implementation and Experimental Analysis 51

2.4.1 Impact of the Computing Pattern Procedure 52
2.4.2 Quality of the Computed Plan 54
2.4.3 Comparative Analysis with SOTA Symbolic Planners . 57
2.4.4 Comparative Analysis with SOTA Search-Based Planners 58
2.4.5 Overall Comparative Analysis 59

2.5 Conclusions and Future work 59
2.5.1 Considerations on Classical Planning 61

3 SPP in Classical Planning with Conditional Effects 63
3.1 Preliminaries . 66

3.1.1 Classical Planning Task with Conditional Effects 66
3.1.2 Propositional Formulas and Binary Decision Diagrams 68

3.2 Complexity of Rolling . 71
3.3 Rolling Actions with Conditional Effects 73

3.3.1 Transition Functions and Transition Relations 73
3.3.2 Computing the Transitive Closure 76

3.4 The Transitive ≺-Encoding for Classical Planning with CEs . . 80
3.5 Valid Plan with the Transitive ≺-Encoding. 82
3.6 Correctness, Completeness, and Domination 84

3.6.1 Correctness and Completeness 84
3.6.2 Domination . 86

3.7 Experimental Analysis . 87
3.8 Conclusion and Future Work 89

4 SPP in Numeric Temporal Planning 90
4.1 Preliminaries . 91
4.2 Standard Encodings in SMT 92
4.3 Temporal Numeric Planning with Patterns 95

4.3.1 Pattern and Language Definition 96
4.3.2 Rolling Durative Actions 97
4.3.3 The Pattern State Encoding 100
4.3.4 The Pattern Time Encoding 101

viii Contents

4.3.5 Correctness and Completeness Results 104
4.4 Experimental Results . 106
4.5 Conclusion . 108

5 Boosting SPP with Symbolic Search 109
5.1 Motivating Example . 110
5.2 Pushing Numeric Pattern Planning 112

5.2.1 Concatenating Patterns 114
5.2.2 Changing the Pattern During the Search 116
5.2.3 Simplifying the Pattern During the Search 117

5.3 PATTYF Behaviour on the Motivating Example 119
5.4 Experimental Results . 120

6 Discussion: SPP in Applications and Hybrid Planning 123
6.1 In-Station Train Dispatching 123

6.1.1 Stations, Trains and Nominal Timetable 124
6.1.2 States and Commands 127
6.1.3 Forecast . 129
6.1.4 The Dispatchment . 130
6.1.5 SPP for the INSTRADI Problem 133

6.2 Hybrid Planning . 135
6.2.1 Formalism . 136
6.2.2 SPP in Hybrid Planning 139

7 Conclusions, Future Work and Algorethic 142
7.1 Future Work . 142
7.2 Algorethic of Planning . 145

References 158

Acknowledgements 171

List of Figures

1.1 Hierarchy of the different flavours of deterministic planning . 5

2.1 Number of problems solved in a given time, by all the presented
systems . 60

3.1 Two BDDs representing the propositional formula (x1 ∧ x2) ∨
(x3 ∧ x4) ∨ (x5 ∧ x6) with order x1;x2;x3;x4;x5;x6 and order
x1;x3;x5;x2;x4;x6 . 70

3.2 BDD representation of the transition relation Tinx(V, V ′) of the
COUNTERS example. 75

3.3 BDD representation of the transitive closure T +
inx(V, V

′) of the
COUNTERS example. 79

3.4 Experimental analysis run on the COUNTERS domain with 5

counters and on problems with increasing bits B, from 2 to 12 88

6.1 A schema of a railway station 125
6.2 An example of incompatible routes 126
6.3 An example of the movement of two trains 128
6.4 Connections of the modelled station with other stations 131
6.5 The routes connecting an entry point with an exit point 133
6.6 Graphical representation of the SMTPLAN+ PaS encoding of a

hybrid planning task [Cashmore et al., 2016] 140

List of Tables

2.1 Comparative analysis between PATTYA, PATTYE and PATTYR . . 51
2.2 Comparative analysis between PATTYE, PATTYM and PATTYI . . 55
2.3 Comparative analysis between PATTYE and other symbolic plan-

ners . 56
2.4 Comparative analysis between PATTYE and other publicly avail-

able search-based planners . 57

4.1 Comparative analysis between our planner PATTYT, the logic-
based solvers ANMLSMT, ITSAT and the search-based solvers
LPG, OPTIC and TFD . 106

5.1 Comparative analysis between PATTYO, PATTYG, PATTYH and
PATTYF. The labels (S) and (L) indicate if the numeric planning
task is Simple or Linear, according to the IPC definition. 118

5.2 Comparative analysis of PATTYF and the search based planners
ENHSP, METRICFF and NFD. 120

List of Theorems

1.1 Complexity of Classical Planning [Bylander, 1994] 6
1.2 Complexity of Classical Planning with CEs [Nebel, 2000] . . . 6
1.3 Complexity of Numeric Planning [Helmert, 2002] 6
1.4 Complexity of Bounded Numeric Planning [Gigante and Scala,

2023] . 6
1.5 Complexity of Temporal Planning [Gigante et al., 2022] . . . 7
1.6 Compilability from Classical Planning to Classical Planning

with CEs [Nebel, 2000] . 8
1.7 Compilability from Numeric Planning to Classical Planning

with CEs [Gigante and Scala, 2023] 9
2.1 Correctness and Completeness of SPP(Π) 22
2.2 Rolling’s Theorem [Scala et al., 2016d] 25
2.4 Domination of ≺+ a over ≺ 32
2.5 Elimination From Redundant Pattern 34
2.6 Strong Equivalence of Patterns 38
2.7 Strong Domination of Patterns 39
2.8 Correctness and Completeness of the Rolled-up Encoding and

the Standard encoding [Scala et al., 2016d] 46
2.9 Correctness and Completeness of the R2∃-≺-encoding [Bofill

et al., 2017] . 48
2.10 Correctness and Completeness of the ≺-encoding ΠS,≺ 48
2.11 Domination of ΠS,≺ over ΠR and ΠR2∃,≺ and ΠS 49
3.1 Complexity of Classical Planning With CEs and Only One Action 72
3.2 Number of Repetitions Modelled by T ia(s, s

′) 77
3.3 Number of Repetitions Modelled by Ri

a(s, s
′) 78

3.4 Determinism of Ri
a(s, s

′) . 78
3.5 Correctness of ROLLING . 84
3.6 Correctness and Completeness of Π≺0 85

xii List of Theorems

3.7 Correctness and Completeness of Π≺M 85
3.8 Correctness and Completeness of Π≺+ 86
3.9 Correctness and Completeness of CEs-SPP (Π) 86
3.10 Domination of Π≺+ Over Π≺M Over Π≺0 86
4.2 Correctness and Completeness of Temporal Π≺ 105
5.1 Satisfiability of Π≺1 With ≺ a Pattern Covering a Valid Plan . . 113
5.2 Satisfiability of Π≺1 With ≺ a n-complete Pattern 114
5.3 Correctness and Completeness of PATTYG(Π) 115
5.4 Correctness and Completeness of PATTYH(Π) 117
5.5 Correctness and Completeness of PATTYF(Π) 118

List of Algorithms

2.1 SPP algorithm. In SPP, the pattern ≺I is computed once in the
initial state and ≺ is ≺I concatenated n times. 21

3.1 CEs-SPP (Π): SPP algorithm for Classical Planning with CEs . . 82
3.2 ROLLING(a, s, s′′, q): Computation of the rolling of a needed

to reach s′′ from s . 83
5.1 PATTYG algorithm . 115
5.2 PATTYH and PATTYF algorithms. 116

Chapter 1

Introduction on Planning

1.1 Planning

Planning involves finding a sequence of actions – i.e., a plan – that allows
an agent, acting in an environment, to reach a goal from a specified initial
condition. Making plans is often considered a marker of intelligence, which
is why automated planning has been one of the oldest problems in Artificial
Intelligence (AI) [McCarthy and Hayes, 1969]. A planning system, or planner,
takes a formalized problem model as input and applies problem-solving
techniques –such as heuristic search [Bonet and Geffner, 2001] or satisfiability
[Kautz and Selman, 1992] – to find a plan. Transforming the model into a
search space or logical reasoning task, and developing heuristics and strategies
to solve it efficiently, are challenges handled by the system’s designer. The
planner itself does not need to understand the nature of the problem; it can
work with any problem that can be represented in the modelling language.
This characteristic of planners is referred to as domain-independence.

The planning phase primarily addresses state transformation problems
involving a set of actions that can alter the state of the system (i.e., the
environment and the agents together). A plan is a sequence of actions in that
set, possibly repeated, that, when executed, transitions the system from an
initial state to a desired goal state. Depending on the specific nature of the
planning problem, the plan could either be a sequence of actions or a detailed
schedule, where actions are carried out at specific times.

2 Introduction on Planning

1.2 Flavours of Planning

As stated before, domain-independent planners can solve only problems that
can be represented in the modelling language for which the planner is built for.
In this thesis, we call these modelling languages flavours. To describe flavours,
we will employ an alternative definition of planning, based on the concept of
autonomous agents. An autonomous agent1 is a system – virtual or physical
– which has sensors and actuators. Sensors are used to inspect the current
state of the environment in which the agent operates, and actuators are used
to change the state of the environment or of the agent itself. For example,
a vacuum robot [Russell and Norvig, 2020] has (i) sensors to understand if
there is dirt underneath itself and a localization sensor to understand where it
is placed in a room, and (ii) actuators to vacuum the dirt and to move inside a
room. This agent-based model allows defining different flavours of planning:

1. Deterministic Planning: where the sensors can observe the whole state
of the world and the actuators can change the state of the world in an
exact and reliable way. For example, the vacuum robot can precisely
determine its position in the room and whether there is dirt below itself,
and can precisely move in the room.

2. Nondeterministic Planning: where the agent can observe the state of
the environment through perfect sensors, but the actuators could lead
the agent to one among possible known states, and thus the agent can
know the resulting state only after the actuators are used. For example,
the vacuum robot’s actuators could fail to vacuum correctly the dirt
or its movements could be imprecise. The Nondeterministic Planning
flavour presents in two variants:

(a) Fully Observable Nondeterministic (FOND) Planning [Daniele et al.,
1999] deals primarily with finding a contingent plan, i.e., simu-
lating every potential outcome of a nondeterministic action and
finding a plan which is guaranteed to reach the desired goal, even
if the actuators fail,

1In this section, we use the singular term agent for simplicity, but in reality, planning can
also deal with multiple agents. To make things easier, we can consider as a single agent the
centralized control system that controls and gives command to all the (sub-)agents.

1.2 Flavours of Planning 3

(b) Probabilistic Planning [Yoon et al., 2007] focuses on maximiz-
ing the probability of achieving the goal, considering only one
randomly chosen action outcome for each action in the plan.

The state of the art for both FOND planning and probabilistic planning involves
making the actions deterministic by replacing every nondeterministic action
with a set of deterministic ones and using a deterministic planner to find
a solution [Muise et al., 2012]. In this thesis, we concentrate mainly on
the deterministic flavour, since improving this flavour also improves the
nondeterministic one.

A plan is said to be valid when, among other properties which are depen-
dent on the flavour, it can bring the agent from an initial state to a goal state.
Other flavours of planning exist depending on whether the initial condition is
or is not completely defined [Nebel, 2000] and thus, in the latter case, a plan
must be found for all possible initial conditions. In this thesis, we assume the
initial condition to be fully specified.

In the case of deterministic planning, usually, actions have preconditions
– associated with the sensors of the agent – which is a condition imposing
when the action is applicable, and effects – associated with the actuators of
the agent – which describe how the state of the environment change after the
action is executed. Using preconditions and effects, we can again categorize
planning into different flavours:

1. In Classical Planning [McDermott, 2000; Bacchus, 2001] the environ-
ment is represented only by propositional variables (i.e., variables which
can be either true or false), preconditions are propositional formulas
over these propositional variables and effects can either put a variable
to true or false. Actions are instantaneous (or atomic), meaning that
there cannot be any other action applied in between the time the pre-
conditions of the action are checked, and the effects of the action are
applied. A valid plan is a sequence of actions, which, executed one after
the other, leads from an initial state to a goal state.

2. In Classical Planning with Conditional Effects (CEs) (see, e.g., Nebel
[2000]), we are in the same conditions as Classical Planning, but ef-
fects are conditional, meaning that even if an action is applied, its

4 Introduction on Planning

effects can be applied or not, depending on whether a condition (i.e., a
propositional formula) holds in the state before applying the action.

3. In Numeric Planning (see e.g., Fox and Long [2003] or Scala and
Gerevini [2020]), the environment can be represented by propositional
and numerical variables (ranging over Q). Actions are instantaneous.

4. In Temporal Planning (see, e.g., Gigante et al. [2022]), the environment
can be represented by propositional variables or also include numeric
variables – in which case it is referred to as Temporal Numeric Planning.
Actions are not instantaneous and can have durations (fixed or flexible).
The preconditions can be checked at the start, at the end or throughout
the action and effects can be applied at the start or at the end of the
action. A plan is now a set of timestamped actions, telling when each
action in the plan should start and its duration. For this reason, actions
can now be executed in parallel.

5. In Hybrid Planning (see, e.g., Fox and Long [2006]), actions can have
durations and the environment can act on its own with events and
processes, which are not under the control of the agent. Processes
and events have preconditions and effects and, while processes’ effects
represent continuous change in numeric variables, events’ effects are
immediately applied as soon as their preconditions are met. While the
agent can always decide not to perform an action, even if its conditions
are respected, events must be triggered as soon as their conditions are
respected. For example, if we model the task of cooking pasta, the agent
actions could be: putting the pot with water on the stove, turning on
the stove, adding salt to the water or dropping the pasta in to the water.
A process could take care of increasing the temperature of the water
when the stove is on and the pot is on top of the stove and an event
could signal that the water has reached 100◦C, it is boiling, and the
temperature should no longer be increased. The process and the event
cannot be postponed. For these reasons, hybrid planning has already
proved very effective in solving complex real-world problems such as
Traffic Control [Vallati et al., 2016], Train Dispatching [Cardellini et al.,
2021a,b,c] – which we will explore in Chapter 6 –, Unmanned Aerial

1.2 Flavours of Planning 5

Classical
Planning

Classical
Planning
with CEs

Numeric
Planning

Temporal
Numeric
Planning

Hybrid
Planning

Temporal
Planning

Durative
actions

Durative
actions

Numeric
Vars

Numeric
Vars

Events and
Processes

CEs

Fig. 1.1 Hierarchy of the different flavours of deterministic planning. Bold
indicates flavours which are covered in this thesis.

Vehicle Control [Kiam et al., 2020] and Pharmacokinetic Optimization
[Alaboud and Coles, 2019].

Several other flavours exist (see, e.g., Haslum et al. [2019]). In this thesis, we
focus on these five flavours, given the massive literature focused on improving
them, and the presence of several benchmark domains in the International
Planning Competitions (IPC) [Taitler et al., 2024].

Moreover, one could notice how one flavour can be considered as a special
case of another flavour. Fig. 1.1 shows the hierarchy of the flavours for
deterministic planning. We can see that

1. Classical Planning is a special case of Classical Planning with CEs where
all the CEs have effects where the condition is always respected (i.e.,
true)

2. Classical Planning is a special case of Numeric Planning where all the
variables are propositional.

3. Numeric Planning (resp. Classical Planning) is a special case of Temporal
Numeric Planning (resp. Temporal Planning) where all the actions have
duration equal to zero.

6 Introduction on Planning

4. Temporal Numeric Planning is a special case of Hybrid Planning where
there are no events and processes.

The dashed arrow in Fig. 1.1 means that all the flavours above Classical
Planning (i.e., Numeric, Temporal, Temporal Numeric and Hybrid) could,
in theory, be defined also with CEs (e.g., Numeric Planning with CEs). We
decided not to investigate these flavours further, since most of the literature
with CEs is focused on the classical case.

1.3 Complexity of Planning

We now briefly review the literature on the study of the complexity of planning,
depending on the flavour. Since we are interested in the decision problem,
we define PLANEX to be the problem of deciding whether a valid plan exists
for a planning task.

Theorem 1.1 (Bylander [1994]). PLANEX for a classical planning task is
PSPACE-complete.

Theorem 1.2 (Nebel [2000]). PLANEX for a classical planning task with CEs is
PSPACE-complete.

Theorem 1.3 (Helmert [2002]). PLANEX for a numeric planning task is unde-
cidable.

Thm. 1.3 undecidability mainly comes from the fact that the state-space
when considering also numeric variables in Q is infinite. For this reason, Gi-
gante and Scala [2023] introduced the concept of Bounded Numeric Planning
where each numeric variable (i) has an upper and lower bound, and (ii) has
a discrete domain.

Theorem 1.4 (Gigante and Scala [2023]). PLANEX for a bounded numeric
planning task is PSPACE-complete.

Regarding the temporal planning flavour (without numeric variables),
Gigante et al. [2022] showed that the complexity depends on the particular
semantics used. We will see in Chapter 4 that there exist different interpreta-
tions of plan validity depending on whether

1.3 Complexity of Planning 7

1. self-overlapping: we allow self-overlapping of actions (i.e., the same
action can be applied in parallel multiple times),

2. ϵ-separation: mutex actions (i.e., two actions that either modify each the
same variable or where one action has in the preconditions a variable
modified by the other action) are required to happen at times separated
by a small value ϵ, or

3. >0-separation: mutex actions are required to not happen at the same
time.

In Chapter 4, we will focus on the case where we disallow self-overlapping
and guarantee ϵ-separation.

Theorem 1.5 (Gigante et al. [2022]). PLANEX for temporal planning without
self-overlapping and ϵ-separation is PSPACE-complete. PLANEX for temporal
planning with self-overlapping and ϵ-separation is EXPSPACE-complete. PLANEX

for temporal planning with self-overlapping and >0-separation is undecidable.

In Temporal Numeric Planning, we directly inherit the properties of (un-
bounded) numeric planning, making it undecidable. For Hybrid Planning,
in the literature there is no thorough analysis of its complexity, due also to
a lack of formal description of its properties and characteristics. However,
in the general case, it is easy to see that PLANEX for Hybrid Planning could
be undecidable due to the presence of numeric continuous variables. Some
investigation has yet to be made on how the complexity changes when we
restrict the domain of numeric variables (like in Bounded Numeric Planning)
and if we consider different semantics (like in Temporal Planning).

1.3.1 Compilation Schemes

As stated by Thms. 1.1, 1.2, 1.4 and 1.5, all the flavours we cover in this thesis
are PSPACE-complete.2 One could think that, since they all belong to the same
complexity class, problems of the different flavours have the same “difficulty”.
This, however, is not supported by the literature, where approaches which

2We will introduce in Chapter 2 an approach for solving unbounded numeric planning,
which is undecidable in general. However, many of the problems in the literature and in
real-world instances present integer bounded variables.

8 Introduction on Planning

have been proposed for a flavour fail to be applicable to other flavours, or
in applications, where problems which can be swiftly solved by a solver of
a flavour become much harder to solve when we introduce elements (e.g.,
numeric variables or durations) that bring the problem to another flavour.

For this reason, we need another concept to categorise how “difficult” it is
to find a plan for a particular flavour. For this reason, compilation schemes
have been introduced for classical planning and classical planning with CEs by
Nebel [2000] and then expanded for numeric planning by Gigante and Scala
[2023]. Intuitively, we say that a planning problem expressed in flavour A
is compilable into another planning problem expressed in flavour B if there
exists a function f mapping each planning problem ΠA in A into a planning
problem f(ΠA) in B such that (i) every plan for ΠA can be mapped into a plan
for f(ΠA) and (ii) the mapping f is polynomial-time and polynomial-space
computable. Moreover, Nebel [2000] categorizes compilation schemes based
on the plan’s size of the compiled problem w.r.t. the original planning problem.
Let πA be a (valid) plan for ΠA and πB be a (valid) plan for f(ΠA) and let
|πA|, |πB| be their length. We say that

1. the compilation scheme preserves plan size exactly if |πB| ≤ |πA|+ k for
some k ∈ N≥0,

2. the compilation scheme preserves plan size linearly if |πB| ≤ c×|πA|+k
for some c ∈ Q>0 and k ∈ N≥0,

3. the compilation scheme preserves plan size polynomially if |πB| ≤
p(|πA|, |ΠA|) for some polynomial p depending on the length of πA and
on the original problem ΠA.

Intuitively, the desired property for compilation schemes is to preserve plan
size exactly, since expanding the plan size usually denotes a longer time
required to find a solution.

With this intuition of compilation schemes, we can recall some previous
work from the literature

Theorem 1.6 (Nebel [2000]). A classical planning problem with CEs cannot
be compiled to a classical planning problem without CEs preserving plan size
linearly.

1.3 Complexity of Planning 9

Theorem 1.7 (Gigante and Scala [2023]). A (bounded) numeric planning
problem can be compiled into a classical planning problem with CEs preserving
plan size exactly, and vice versa.

It is clear that the above theorem does not hold for unbounded numeric
planning, due to its infinite state-space. While Thm. 1.7 shows that there
could be some symmetries between (bounded) numeric planning and planning
with CEs, the presented compilation by Gigante and Scala [2023] makes use
of a translation from boolean formulas to non-linear numeric conditions (e.g.,
pa ∧ pb with pa, pb ∈ {⊤,⊥} is translated into na× nb = 1 with na, nb ∈ {0, 1}).
This non-linearity of conditions – as we will explore in Chapter 2 – becomes
very problematic for many solvers, and thus the compilation results are
difficult to exploit.

Without explicitly employing compilation schemes, Cushing et al. [2007]
shows “what makes temporal planning really temporal” and defines what are
the characteristics that a temporal planning task must have to be temporally
expressive. Most importantly, Cushing et al. introduce the property of required
concurrency – i.e., where every plan must have at least two actions that are
scheduled to happen in parallel. If a planning task doesn’t require concurrency,
then the problem can be translated into a classical planning problem, thus
removing the temporal characteristics of the task. If, instead, the problem is
temporally expressive, and thus it requires concurrency, then this translation
cannot be performed without losing completeness (i.e., all the existing plans
can be found).

For the Hybrid Planning flavour, Percassi et al. [2023a,b] show how it is
possible to compile a discrete hybrid planning problem – i.e., where time
is discretised by a discretisation step – directly into numeric planning while
using two compilations that they name EXP and POLY. The first leads to a
numeric planning task which is exponentially larger than the original hybrid
planning task input but preserves the plan length. The second one keeps the
resulting formulation polynomial but increases the plan length polynomially.
Even if Percassi et al. do not prove that the compilation cannot be done
without a polynomial increase in the plan length, it is believed that this is the
case.

10 Introduction on Planning

1.4 Satisfiability Modulo Theory

1.4.1 Satisfiability

The satisfiability problem (SAT) is formally defined as follows. Given a
propositional formula f(x1, . . . , xn), composed of n propositional variables,
logical connectives (e.g., ∧ for AND, ∨ for OR, and ¬ for NOT), and paren-
theses for grouping, determine whether there exists a truth assignment or
model to the variables x1, . . . , xn that satisfies f . A model is a mapping
µ : {x1, x2, . . . , xn} 7→ {⊤,⊥}, where ⊤ and ⊥ are the symbols for true and
false. The goal is to check whether there exists a model µ such that f evaluates
to true under σ. Formally, this can be written as:

∃µ : {x1, x2, . . . , xn} 7→ {⊤,⊥}, s.t. f(µ(x1), . . . , µ(xn)) ≡ ⊤,

where≡ is the symbol for logical equivalence (e.g.,⊤∨⊥ ≡ ⊤). The formula µ
is often expressed in Conjunctive Normal Form (CNF), where it is represented
as a conjunction of clauses, each clause being a disjunction of literals. A
literal is either a variable xi or its negation ¬xi. Thus, a CNF formula f can be
expressed as:

f = C1 ∧ C2 ∧ · · · ∧ Cm,

where each clause Ci is of the form:

Ci = (li,1 ∨ · · · ∨ li,ki),

with ki ≥ 1, and li,j being a literal. The formula f , expressed in CNF is
satisfiable if and only if there exists a model µ such that at least one literal in
every clause Ci is true.

1.4.2 Theories

Satisfiability Modulo Theories (SMT) extends the SAT problem by incorporat-
ing background theories, enabling reasoning over richer logical structures.
Formally, SMT addresses the problem of determining the satisfiability of logical

1.5 Planning as Satisfiability 11

formulas expressed in first-order logic regarding one or more background
theories. These theories include linear arithmetic, bit-vectors, arrays, uninter-
preted functions, and others.

Background theories enrich the expressiveness of SMT by providing specific
semantic structures. Commonly used theories include:

• Equality and Uninterpreted Functions (EUF): Provides reasoning over
uninterpreted function symbols, where no additional constraints on
their behavior are assumed except for equality.

• Linear Arithmetic: Supports reasoning over integers (Z) and real
numbers (R) under linear constraints, e.g., 3x+ 2y ≥ 7.

• Bit-Vectors: Enables reasoning about fixed-width binary representations,
useful for hardware verification and cryptography.

• Arrays: Provides reasoning about indexed data structures with axioms
such as read-over-write.

• Quantifiers: Allows universally or existentially quantified formulas,
e.g., ∀xP (x), to be incorporated into SMT queries.

In this thesis, we will employ SMT with the Linear Arithmetic theory.

1.5 Planning as Satisfiability

We now show the Planning as Satisfiability (PaS) technique [Kautz and
Selman, 1992, 1996] to find valid plans for a planning task. We focus our
attention to the case of deterministic planning problems with fully specified
initial conditions, which covers all the flavours that we have presented in the
previous section. Let Π be such a planning task. Independently of the flavour,
we can represent the planning task through the following objects.

1. X is a set of state variables, each one equipped with a domain repre-
senting the values it can take. These variables represent the current
state. Depending on the flavour, the variables can be propositional or
numeric.

12 Introduction on Planning

2. A is a set of action variables, each one again equipped with a domain.
These variables model the execution of the actions of Π. Usually, there
is at least a variable for every action. If the variable associated to an
action is propositional, it models whether the action is applied or not,
while if the variable is numeric, it models how many times the action is
repeated (as we will see from Chapter 2, this is called rolling).

3. X ′ is a copy of X and represents the next state.

4. T (X ,A,X ′) is the symbolic transition relation, a formula in the variables
X ∪A ∪ X ′. Intuitively, the transition relation models how the current
state X evolves into X ′, depending on the (possible) executions of the
actions in A. Together with T (X ,A,X ′), a decoding function has to be
defined enabling to associate to each model of T (X ,A,X ′) at least one
sequence of the actions of Π. Standard requirements for T (X ,A,X ′)
are correctness and completeness, which depend on the flavour of
Π. Correctness means that all sequences modelled by T (X ,A,X ′) are
valid according to the particular semantic of the flavour and make X
transition into X ′. Completeness means that T (X ,A,X ′) can capture
all the valid sequences of actions which make X transition into X ′.

5. I(X) is the initial state formula, imposing the fully specified initial
condition of Π on the state variables.

6. G(X) is the goal formula, imposing the goal condition of Π on the state
variables.

Thus, a (planning as satisfiability) encoding E of Π is a tuple

ΠE = ⟨X ,A, I(X), T (X ,A,X ′),G(X)⟩ (1.1)

In the planning as satisfiability approach [Kautz and Selman, 1992], we fix
an integer n ≥ 0 called bound or number of steps, we make n+1 disjoint copies
X0, . . . ,Xn of the set X of state variables, and n disjoint copies A0, . . . ,An−1
of the set A of action variables, and define

1. I(X0) as the formula in the variables X0 obtained by substituting each
variable x ∈ X with x0 ∈ X0 in I(X);

1.6 Thesis Contribution 13

2. for each step i = 0, . . . , n − 1, T (Xi,Ai,Xi+1) as the formula in the
variables Xi ∪ Ai ∪ Xi+1 obtained by substituting each variable x ∈ X
(resp. a ∈ A, x′ ∈ X ′) with xi ∈ Xi (resp. ai ∈ Ai, xi+1 ∈ Xi+1) in
T (X ,A,X ′);

3. G(Xn) as the formula in the variables Xn obtained by substituting each
variable x ∈ X with xn ∈ Xn in G(X).

Then, the encoding ΠE of Π with bound n is the formula

ΠE
n = I(X0) ∧

n−1∧
i=0

T (Xi,Ai,Xi+1) ∧ G(Xn). (1.2)

To each model µ of ΠE
n , we associate the set of sequences of actions α0; . . . ;αn−1,

where each αi is a sequence of actions corresponding to the model of the
formula T (Xi,Ai,Xi+1) obtained by restricting µ to Xi ∪ Ai ∪ Xi+1, i ∈ [0, n).
In the following, (ΠE

n)
−1 is the set of sequences of actions in A associated to

a model of ΠE
n . The correctness of T (X ,A,X ′) ensures the correctness of

ΠE: for each bound n, each sequence in (ΠE
n)

−1 is a plan. The completeness
of T (X ,A,X ′) ensures the completeness of ΠE: if there exists a plan for Π,
it will be found by considering ΠE

0 , ΠE
1 , It is clear that the number of

variables and size of Eq. 1.2 increase with the bound n, explaining why much
of the research has concentrated on how to produce encodings allowing to
find plans with the lowest possible bound n.

1.6 Thesis Contribution

The common thread of this thesis lies in the last sentence of the previous
section. We introduce the Symbolic Pattern Planning (SPP) approach – based
on the PaS approach– for different flavours of planning, and we show that our
approach can dominate all the other approaches in the literature. Given two
planning as satisfiability encodings E1 and E2 we say that E1 dominates E2 if,
for each bound n, ΠE2

n satisfiability implies that also ΠE1
n is satisfiable. Thus,

if E1 dominates E2, assuming the correctness of the two encodings and that a
plan will be searched by incrementally increasing the bound starting from 0,
E1 will find a plan with a lower or equal bound than E2. We will present our

14 Introduction on Planning

approach for Classical and Numeric Planning (Chapter 2), Classical Planning
with Conditional Effects (Chapter 3) and Temporal Planning (Chapter 4). We
will also perform experimental analysis on well-known domains, showing
that our solver PATTY outperforms most of the state-of-the-art planners in the
literature in the characterised flavours. Successively, in Chapter 5, we will
present a flavour-independent approach that allows to boost even more the
performances of PATTY, employing an approach mimicking standard search
procedures. In Chapter 6, we will formalise hybrid planning and discuss how
our approach can be extended also to this flavour. Moreover, we will present
an application – the In-Station Train Dispatching Problem – and discuss how
our approach can greatly benefit this application setting. Finally, in Chapter 7,
we will recap the work done in the thesis, we will provide some pointers for
future work and we will discuss on the ethical problems concerning planning
and AI in general.

Chapter 2

SPP in Classical and Numeric
Planning

The chapter1 is structured as follows. After the preliminaries on how to define
a numeric planning problem Π in PDDL2.1 (Section 2.1), we present our SPP

encoding, proving how it allows defining correct and complete procedures
for Π in Section 2.2. In the same section, we present the outlined pattern
selection procedures and address the plan quality problem, respectively. In
Section 2.3 we frame our encoding in the planning as satisfiability approach,
and show that our encoding provably dominates the state-of-the-art rolled-up
and R2∃ encodings. We end the chapter with the experimental analysis, the
conclusions, and perspectives on future work. One running example is used
throughout the chapter to illustrate the formal definitions and the theoretical
results.

2.1 Numeric Planning in PDDL2.1

As briefly outlined in Chapter 1, there are many languages for specifying
planning problems. Here, we specifically consider numeric planning problems

1Part of this chapter has been published in [Cardellini et al., 2024b]

16 SPP in Classical and Numeric Planning

specified in PDDL2.1, level 2 [Fox and Long, 2003], standardly defined as a
tuple Π = ⟨VB, VN , A, I, G⟩ in which2

1. VB and VN are finite sets of Boolean and numeric state variables with
domains {⊤,⊥} for truth and falsity, and the set Q of rational numbers,
respectively;

2. A is a finite set of actions. An action a is a pair ⟨pre(a), eff(a)⟩ in which

(a) pre(a) is the union of the sets of propositional and numeric pre-
conditions of a, the former of the form either v = ⊤ or v = ⊥ and
v ∈ VB, the latter of the form ψ ⊵ 0, with ⊵ ∈ {≥, >,=} and ψ a
linear expression over VN , i.e., with ψ equal to

∑
w∈VN kww+ k, for

some kw, k ∈ Q; and

(b) eff(a) is the union of the sets of propositional and numeric effects,
the former of the form v := ⊤ or v := ⊥, the latter of the form
w := ψ, with v ∈ VB, w ∈ VN and ψ a linear expression.

We assume that for each action a and variable v ∈ VB ∪ VN , v occurs
in eff(a) at most once to the left of the operator “:=”, and when this
happens we say that v is assigned by a. As customary, we write

(a) v += ψ as an abbreviation for v := v+ψ (and similarly for v −= ψ),
and

(b) ψ < 0 as an abbreviation for −ψ > 0, and similarly for ψ ≤ 0.

3. I is the initial state mapping each variable in VB ∪ VN to an element
in its domain, and G is a finite set of goal formulas, each one being a
propositional combination of propositional and numeric conditions.

Let Π = ⟨VB, VN , A, I, G⟩ be a numeric planning problem. A state s maps
each variable v ∈ VB ∪ VN to a value s(v) in its domain, and we assume
the domain of each state is extended to linear expressions, Boolean/numeric
conditions and their propositional combinations in the standard way. An
action a ∈ A is executable in a state s if s satisfies all the preconditions of a.
Given a state s and an executable action a, the result of executing a in s is the
state s′ = res(a, s) such that for each variable v ∈ VB ∪ VN ,

2The PDDL language allows for a lifted representation with variables defined over a finite
domain. Here we consider the grounded version, in which variables are replaced with the
elements in the domain in all possible ways.

2.1 Numeric Planning in PDDL2.1 17

1. s′(v) = ⊤ if v := ⊤ ∈ eff(a), s′(v) = ⊥ if v := ⊥ ∈ eff(a), s′(v) = s(ψ) if
(v := ψ) ∈ eff(a), and

2. s′(v) = s(v) otherwise.

Consider a finite sequence of actions α = a1; . . . ; an of length n ≥ 0 (for
n = 0, α reduces to the empty sequence ϵ).

The state sequence s0; . . . ; sn induced by α in s0 is such that for i ∈ [0, n),
the state si+1

1. is undefined if either ai+1 is not executable in si or si is undefined, and

2. is res(ai+1, si), the result of executing ai+1 in si, otherwise.

If sn is defined, we say that

1. α is executable in s0,

2. sn is the result of executing α in s0, which will be denoted also with
res(α, s0), i.e.,

sn = res(α, s0) = res(an, res(an−1, . . . , res(a1, s0) . . .)).

Notice that for any state s, the empty sequence ϵ is executable in s and
res(ϵ, s) = s. Finally, if res(α, I) is defined and satisfies the goal formulas in
G, we say that α is a (valid) plan.

Example 2.1. There are two robots l and r for left and right, respectively, whose
position xl and xr on an axis correspond to the integers ≤ 0 and ≥ 0, respectively.
The two robots can move to the left or to the right, decreasing or increasing their
position by 1. The two robots carry ql and qr objects, which they can exchange.
However, before exchanging objects at rate q, the two robots must connect setting
a Boolean variable p to ⊤, and this is possible only if they have the same position.
Once connected, they must disconnect before moving again. The quantity q can
be positive or negative, corresponding to l giving objects to r or vice versa. This
scenario can be modelled in PDDL with VB = {p}, VN = {xl, xr, ql, qr, q} and the

18 SPP in Classical and Numeric Planning

following set of actions:

lftr : ⟨{xr > 0}, {xr −= 1}⟩, rgtr : ⟨{p = ⊥}, {xr += 1}⟩,
lftl : ⟨{p = ⊥}, {xl −= 1}⟩, rgtl : ⟨{xl < 0}, {xl += 1}⟩,
conn : ⟨{xl = xr}, {p := ⊤}⟩, disc : ⟨{p = ⊤}, {p := ⊥}⟩,
exch : ⟨{p = ⊤, ql ≥ q, qr ≥ −q}, {ql −= q, qr += q}⟩,

lre : ⟨{}, {q := 1}⟩,rle : ⟨{}, {q := −1}⟩.

(2.1)

The action lftr models the right robot going left, and similarly for rgtr, lftl
and lftr.

Assume the initial state is I = {p = ⊥, xl = −XI , xr = XI , ql = Q, qr =

0, q = 1}, with XI , Q ∈ N. Assuming G = {ql = 0, qr = Q, xl = −XI , xr = XI},
one of the shortest plans is

rgtlXI ;lftrXI ;conn;exchQ;disc;lftlXI ;rgtrXI (2.2)

where, for each action a and m ∈ N, am denotes the sequence consisting of the
action a repeated m times (for m = 0, am = ϵ). According to the plan in Eq. 2.2,
the robots go to the origin, connect, exchange the Q items, disconnect, and then
go back to their initial positions.

In the rest of the chapter, v, w, x, y denote variables, a, b denote actions and
ψ denotes a linear expression, each symbol possibly decorated with subscripts.
Further, we will handle sequences of actions in different ways, depending on
whether we intend each to be

1. a generic sequence of actions, in which case we will use the letter α, or

2. a plan, in which case we will use the letter π, or

3. a pattern (see later), in which case we will use the symbol ≺,

each symbol α, π,≺ possibly decorated with subscripts and/or superscripts.
For any two sequences of actions α and α′, α;α′ denotes the sequence of
actions obtained by concatenating α′ to the end of α. Finally, we continue to
use standard logical terminology using terms like satisfiable, contradictory
and valid, taking them for granted.

2.2 Symbolic Pattern Planning 19

2.2 Symbolic Pattern Planning

Consider a numeric planning problem Π = ⟨VB, VN , A, I, G⟩, and a pattern
≺ = a1; a2; . . . ; ak, defined as an arbitrary finite sequence of actions in A

of length k ≥ 0. From the definition, the pattern can be empty (in which
case it reduces to the empty sequence ϵ), or it can contain only some or
all of the actions in A, possibly multiple times, either consecutively or not.
Though the pattern can contain multiple occurrences of a same action a, such
occurrences will be treated as different copies of a. This allows us to treat each
action occurrence in the pattern as a variable in our encoding, simplifying the
notation and the presentation. When necessary, we will write a1, a2, . . . , to
mean the first, second, . . . copy of the action a in the pattern.

In this section, we first formally define the SPP procedure outlined in the
introduction (subsection 2.2.1), proving its correctness and completeness
assuming the corresponding correctness and completeness of our pattern
≺-encoding Π≺ of Π. The formal definition of Π≺, together with the proof
of its correctness and completeness, is given in subsection 2.2.2. Different
procedures to compute patterns and high-quality plans are presented in
subsections 2.2.3 and 2.2.4, respectively.

2.2.1 A Simple SPP Procedure

The basic idea of SPP is to define the value of each state variable in the state
resulting from the execution of a subsequence α of the pattern ≺ as a function
of both the state in which α starts and of the pattern ≺. More in details,
assume that to each action occurrence ai in the pattern we associate a distinct
action variable whose value denotes whether ai has been executed or not
after a1; . . . ; ai−1. Then, every subsequence α of ≺

1. corresponds to one assignment to the action variables in the encoding,
and

2. assuming α is executable in a state s and that s′ = res(α, s), since Π is
deterministic it is possible to express the value of each state variable
in s′ as a function of the starting state s and of the action variables
associated to the action occurrences in ≺.

20 SPP in Classical and Numeric Planning

Thus, in a SPP encoding, we assume to have the following sets of variables:

1. X , the set of state variables, which includes VB ∪ VN , used to impose
the initial conditions;

2. A≺, consisting of one distinct action variable for each action occurrence
in the pattern ≺, used to model which action occurrences in the pattern
are executed; and

3. X ′, the set of resulting state variables consisting of one variable x′ for
each state variable x ∈ X , used to model the values of the state variables
in the resulting state and impose the goal conditions.

About the variables in A≺, we take their domain to be the set of natural
numbers, the value of each variable modeling how many times the action is
being consecutively executed, assuming it is possible (and useful) to execute
an action consecutively more than once in Π.

Then, the (SPP) ≺-encoding of Π is a formula having form

Π≺ = I(X) ∧ T ≺(X ,A≺,X ′) ∧ G(X ′).

in which

1. I(X) is the initial state formula, a formula in the set X of variables,
defined as ∧

v:I(v)=⊤

v ∧
∧

w:I(w)=⊥

¬w ∧
∧

x,k:I(x)=k

x = k.

2. G(X ′) is the goal formula, obtained by making the conjunction of the
formulas in G, once (i) each variable v is replaced with v′, and (ii)

v′ = ⊤ and v′ = ⊥ are substituted with v′ and ¬v′, respectively.

3. T ≺(X ,A≺,X ′) is a (pattern) ≺-symbolic transition relation, a formula
in the variables X ∪A≺ ∪ X ′ providing a definition of each variable in
G(X ′) as a function of the variables in X ∪A≺.

Indeed, each ≺-encoding of Π has to come with a (pattern) ≺-decoding
function, allowing to associate to each model of Π≺ a sequence of actions
in A, which, for the correctness of the ≺-encoding, has to be a plan for Π.

2.2 Symbolic Pattern Planning 21

Algorithm 2.1 SPP algorithm. In SPP, the pattern ≺I is computed once in
the initial state and ≺ is ≺I concatenated n times.
1: function SPP(Π) /* Π = ⟨VB, VN , A, I,G⟩ */
2: n← 0; ≺ ← ϵ;
3: ≺I ← COMPUTEPATTERN(Π);
4: while (TRUE) do
5: Π≺ ← I(X) ∧ T ≺(X ,A≺,X ′) ∧ G(X ′);
6: µ← SOLVE(Π≺);
7: if (µ ̸= 0) then
8: return GETPLAN(µ,≺);
9: end if

10: ≺ ← ≺;≺I ;
11: n← n+ 1;
12: end while
13: end function

For the completeness of the ≺-encoding, we require that if there exists a
subsequence α of ≺ which is a plan of Π, Π≺ is satisfiable.

Then, if for any pattern ≺ we are able to define a correct and complete
≺-encoding Π≺ of Π, the following simple SPP procedure is guaranteed to
return a plan for Π if one exists:

1. fix an initial pattern ≺I including every action in A and start with ≺ = ϵ;

2. check whether Π≺ is satisfiable,

3. extend ≺ by concatenating ≺I to it and iterate the second step upon its
failure.

If π is a plan of length n, π will be a subsequence of the pattern ≺ generated
at the n-th iteration of the above procedure and the correctness and complete-
ness of the ≺-encoding Π≺ guarantees the correctness and completeness of
the procedure. Notice that the above outlined procedure is guaranteed to
terminate at most at the n-th iteration. Indeed, it will terminate as soon as
π is a subsequence of the pattern being tested, and even before if the plan π
contains multiple consecutive occurrences of a same action and our encoding
allows to model such consecutive executions with a single action variable
in ≺I .

Algorithm 2.1 shows the pseudocode of the SPP procedure, in which:

22 SPP in Classical and Numeric Planning

1. COMPUTEPATTERN(Π) returns a complete pattern, i.e., a sequence of
actions which includes all the actions in Π.

2. SOLVE(Π≺) calls a solver which is expected to return a model of Π≺

assuming it is satisfiable, and 0 otherwise.

3. GETPLAN(µ,≺) returns the plan corresponding to the model µ of Π≺,
i.e., the sequence of actions

a
µ(a1)
1 ; a

µ(a2)
2 ; . . . ; a

µ(ak)
k . (2.3)

For any correct and complete encoding Π≺, SPP(Π) is correct (any returned
sequence of actions is a plan) and complete (if a plan exists, SPP(Π) will
return one).

Theorem 2.1. Let Π be a numeric planning problem. If for each pattern ≺ Π≺

is a correct and complete ≺-encoding of Π, then SPP(Π) is correct and complete.

Proof. The correctness of SPP(Π) follows directly from the hypothesis of the
correctness of the ≺-encoding. For the completeness of SPP(Π), let π be a
plan of length n. Then, after the n-th iteration of the loop in SPP(Π), π is
a subsequence of ≺ and thus the completeness of SPP(Π) follows from the
completeness of the ≺-encoding of Π.

The completeness of SPP(Π) essentially relies on the fact that after n
iterations, the pattern ≺ is n-complete, i.e., that it contains at least n non-
overlapping subsequences in which every action in A occurs. It is then clear
that the procedure maintains its correctness and completeness if the SPP(Π)
procedure is modified in order to, at each iteration,

1. compute a possibly different complete pattern to be concatenated with
the previously used pattern. This modification amounts to remove line 3
and insert the new line of code

≺I ← COMPUTEPATTERNI(Π,≺);

in between lines 9 and 10, in which COMPUTEPATTERNI(Π,≺) is as-
sumed to return a complete pattern.

2.2 Symbolic Pattern Planning 23

2. compute an n-complete pattern to be used in the next iteration. The
new n-complete pattern may be entirely different from the previously
used pattern. This modification amounts to remove line 3 and replace
line 10. with the line of code

≺ ← COMPUTEPATTERNN(Π,≺);

in which COMPUTEPATTERNN(Π,≺) is assumed to return a n-complete
pattern.

It is clear that SPP(Π) as in Algorithm 2.1 can be considered a special case of
the SPP(Π) procedure as modified in the first of the above two items, which
in turn can be considered a special case of the SPP(Π) procedure as modified
in the second of the above two items.

2.2.2 A Correct and Complete SPP Encoding for Numeric

Planning Problems

Given the pattern ≺ = a1; . . . ; ak, k ≥ 0, for i ∈ [0, k], we write ≺i as an
abbreviation of the initial pattern a1; a2; . . . ; ai of ≺ = ≺k, with ≺0 = ϵ.

We now formally define a correct and complete ≺-encoding Π≺ of Π,
which amounts to define the ≺-symbolic transition relation T ≺(X ,A≺,X ′).

In the ≺-encoding Π≺ of Π,

1. X = VB ∪ VN , and

2. A≺ contains a distinct action variable with domain in N for each action
occurrence in ≺ (thus |A≺| = k).

As already said, in the following, for each i ∈ [1, k], we will use ai to denote
both the i-th action in ≺ and the corresponding action variable in A≺.

Assume the pattern ≺ is not empty and consider an action a in it (its
position is not relevant at this time). Intuitively, as proposed by [Scala
et al., 2016d], the value assumed by the action variable a ∈ A≺ represents
the number ≥ 0 of times the action has to be consecutively executed. Of
course, the possibility to have a > 1 is an optimization allowing the pattern

24 SPP in Classical and Numeric Planning

≺ to model transitions in which actions are also consecutively executed
more than once: restricting a in {0, 1} neither affects the correctness nor
the completeness of the SPP(Π) procedure, but it may affect performance.
Though it might be desirable to allow a assuming any possible value, it is not
always possible to allow a > 1, e.g., because the action a cannot be executed
more than once, or it is difficult to compute the effects of executing a more
than once, or it is not useful to execute a more than once. To define when it
is possible to allow a > 1, each effect v := e of the action a is categorized as

1. a linear increment, if e = v+ψ with ψ a linear expression not containing
any of the variables assigned by a, as for the effects of the action exch

and lftr in Eq 2.1, or as

2. a general assignment, if it is not a linear increment. General assignments
are further divided into

(a) simple assignments, when e does not contain any of the variables
assigned by a, as in the effects of the actions conn, disc, lre and
rle in Eq. 2.1, and

(b) self-interfering assignments, otherwise.

Then, the action a is eligible for rolling if3

1. a does not contain a self-interfering assignment, and

2. a contains a linear increment.

Whenever an action a is eligible for rolling, it is possible to determine both
the conditions under which it is possible to execute a for m times in a state s,
and the conditions on the resulting state.

Theorem 2.2. [Scala et al. (2016d)] Let Π be a numeric planning problem.
Let a be an action which is eligible for rolling. For any two states s and s′ and
integer m > 0,

s′ = res(am, s)

if and only if
3Here, we consider just the cases α = 0 and α = 1 of Theorem 1 in [Scala et al., 2016d],

which (quoting) “cover a very general class of dynamics, where rates of change are described
by linear or constant equations".

2.2 Symbolic Pattern Planning 25

1. for each v = ⊥ (resp. w = ⊤) in pre(a), s(v) = ⊥ and v := ⊤ ̸∈ eff(a)

(resp. s(w) = ⊤ and w := ⊥ ̸∈ eff(a)), and

2. for each numeric precondition ψ ⊵ 0 in pre(a),

s(ψ)⊵ 0, s(ψ[m])⊵ 0, (2.4)

where ψ[m] is the linear expression obtained from ψ by substituting each
variable x with

(a) x+ (m− 1)× ψ′, whenever x += ψ′ ∈ eff(a) is a linear increment,

(b) ψ′, whenever x := ψ′ ∈ eff(a) is a simple assignment.

3. for each variable v,

(a) s′(v) = ⊤ (resp. s′(v) = ⊥) whenever v := ⊤ ∈ eff(a) (resp. v :=

⊥ ∈ eff(a));

(b) s′(v) = s(v) +m× s(ψ) whenever v += ψ ∈ eff(a);

(c) s′(v) = s(ψ) whenever v := ψ ∈ eff(a) is a simple assignment;

(d) s′(v) = s(v), otherwise.

The conditions in Eq. 2.4 ensure that ψ ⊵ 0 holds in the states in which
the first and the last execution of ai happens. The satisfaction of these two
conditions ensure that each precondition ψ ⊵ 0 of ai is satisfied also in the
intermediate states s in between the first and the last execution of ai. This is
a consequence of the fact, proved in [Scala et al., 2016d], that the function
ψ[ai] is monotonic in ai assuming the action is eligible for rolling.

Now, for each i ∈ [0, k], we define the value σi(v) of each variable v ∈
VB ∪ VN after the execution of ≺i, as a function of the action variables in
X ∪ {a1, a2, . . . , ai}. Clearly, if i = 0, σ0(v) = v while, if i ∈ [1, k], σi(v) is
recursively defined as follows:

1. if v is not assigned by ai, the value of v does not change, no matter
whether ai is executed or not, and thus

σi(v) = σi−1(v);

26 SPP in Classical and Numeric Planning

2. if v := ⊤ ∈ eff(ai), v will get the value ⊤ if ai is executed and will keep
the same value otherwise, and thus

σi(v) = (σi−1(v) ∨ ai > 0);

3. if v := ⊥ ∈ eff(ai), v will get the value ⊥ if ai is executed and will keep
the same value otherwise, and thus

σi(v) = (σi−1(v) ∧ ai = 0);

4. if v += ψ ∈ eff(ai) is a linear increment, the value of v will be in-
cremented by the value of ψ multiplied by the number of times ai is
consecutively executed, and thus

σi(v) = σi−1(v) + ai × σi−1(ψ),

where σi−1(ψ) is the expression obtained by substituting each variable
v ∈ VN in ψ with σi−1(v);

5. if v := ψ ∈ eff(ai) is a general assignment, suitable “at-most-once”
axioms will restrict ai to range in {0, 1} if action ai is not eligible for
rolling, and then executing ai will cause v getting the value σi−1(ψ),
while v will keep the same value if ai is not executed, and thus

σi(v) = ITE(ai > 0, σi−1(ψ), σi−1(v)),

where ITE(ai > 0, σi−1(ψ), σi−1(v)) returns σi−1(ψ) or σi−1(v) depending
on whether ai > 0 is true or not, and belongs to the standard functions
defined in SMTLIB [Barrett et al., 2016].

Example 2.2. Consider Eq. 2.1, and assume ≺ is

lre;rle;lftr;rgtl;conn;exch;disc;rgtr;lftl. (2.5)

The pattern contains all the 9 actions in A exactly once, and the value σ(v) of
each variable v after executing ≺, each action of ≥ 0 times, is

2.2 Symbolic Pattern Planning 27

1. for the Boolean variable p,

σ(p) = (p ∨ conn > 0) ∧ disc = 0,

2. and, for the numeric variables in VN = {xl, xr, ql, qr, q},

σ(xl) = xl + rgtl− lftl,
σ(xr) = xr − lftr+ rgtr,

σ(ql) = ql − exch× qrle,
σ(qr) = qr + exch× qrle,

σ(q) = qrle.

in which qrle abbreviates the term ITE(rle > 0,−1, ITE(lre > 0, 1, q)).

Notice that the above definition of σ(v) for v ∈ VB ∪ VN depends not only on
which are the actions in the pattern, but also on their position in the pattern.
For instance, if ≺ is

lftr;rgtl;conn;exch;disc;rgtr;lftl;lre;rle,

i.e., if we assume we set the value of the state variable q at the end of the pattern,
then the value of σ(v) remains the same as the one above defined for all the
variables except for ql and qr, about which we now get:

σ(ql) = ql − exch× q,
σ(qr) = qr + exch× q,

modelling that the two robots exchange items at the initially fixed rate q.

If we omit the actions lre and rle from the pattern, and thus if we assume
≺ is

lftr;rgtl;conn;exch;disc;rgtr;lftl

we will get the same σ(v) as the one we just defined for all the variables except
for q, about which we now get

σ(q) = q,

28 SPP in Classical and Numeric Planning

reflecting the fact that there is no action in the pattern modifying the initial
value of the state variable q.

If ≺ is

lre1;rle1;lftr;rgtl;conn;exch;disc;rgtr;lftl;lre2;rle2,

i.e., if we assume we set the value of the state variable q both at the beginning
and also at the end of the pattern, then the value of σ(v) remains the same for
the Boolean variable p and the numeric variables xl and xr, while the others
become:

σ(ql) = ql − exch× qrle1,
σ(qr) = qr + exch× qrle1,

σ(q) = qrle2.

in which qrle1 abbreviates the term ITE(rle1 > 0,−1, ITE(lre1 > 0, 1, q)), and
qrle2 abbreviates the term ITE(rle2 > 0,−1, ITE(lre2 > 0, 1, qrle1)).

The ≺-symbolic transition relation T ≺(X ,A≺,X ′) of Π≺ is simply the
conjunction of the formulas enforcing

1. at-most-once axioms for the actions not eligible for rolling; and

2. preconditions axioms enforcing that executing an action is possible only
in states in which its preconditions are satisfied; and

3. an explicit definition of each variable v′ ∈ X ′ as a function of the vari-
ables in X∪A≺, i.e., of the starting state and the variables corresponding
to the action occurrences in the pattern.

Formally, T ≺(X ,A≺,X ′) is the conjunction of

1. amo≺(A) which contains, for each i ∈ [1, k],

ai = 0 ∨ ai = 1,

whenever the action ai is not eligible for rolling.4

4If the action is not eligible for rolling then a can be defined as a Boolean variable.

2.2 Symbolic Pattern Planning 29

2. pre≺(A), which contains, for each i ∈ [1, k]

ai > 0→
∧

v=⊤∈pre(ai)

σi−1(v) ∧
∧

v=⊥∈pre(ai)

¬σi−1(w),

and, for each numeric precondition ψ ⊵ 0 in pre(ai),

ai > 0→ σi−1(ψ)⊵ 0, ai > 1→ σi−i(ψ[ai])⊵ 0.

3. frame≺(VB ∪ VN), consisting of, for each variable v ∈ VB and w ∈ VN ,

v′ ↔ σk(v), w′ = σk(w).

Example 2.3. Assume the pattern ≺ is as shown in Eq. 2.5, i.e.,

lre;rle;lftr;rgtl;conn;exch;disc;rgtr;lftl.

In this case,

1. amo≺(A) is

lre = 0 ∨ lre = 1, rle = 0 ∨ rle = 1,

conn = 0 ∨ conn = 1, disc = 0 ∨ disc = 1.

2. pre≺(A) is equivalent to

lftr > 0→ xr > 0, lftr > 1→ xr − (lftr− 1) > 0,

rgtr > 0→ ¬((p ∨ conn > 0) ∧ disc = 0),

lftl > 0→ ¬((p ∨ conn > 0) ∧ disc = 0),

rgtl > 0→ xl < 0, rgtl > 1→ xl + (rgtl− 1) < 0,

conn > 0→ xl + rgtl = xr − lftr,
disc > 0→ (p ∨ conn > 0),

exch > 0→ ((p ∨ conn > 0) ∧ ql ≥ qrle ∧ qr ≥ −qrle),
exch > 1→ (ql ≥ qrle − (exch− 1)× qrle),
exch > 1→ (qr ≥ −qrle + (exch− 1)× qrle).

in which qrle abbreviates the term ITE(rle > 0,−1, ITE(lre > 0, 1, q)) as
before.

30 SPP in Classical and Numeric Planning

3. frame≺(VB ∪ VN) is

p′ ↔ ((p ∨ conn > 0) ∧ disc = 0),

x′l = xl + rgtl− lftl, x′r = xr − lftr+ rgtr,

q′l = ql − exch× qrle, q′r = qr + exch× qrle,
q′ = qrle.

Π≺ is the conjunction of the above formulas together with the formulas encoding
the initial and goal states. Π≺ is satisfiable, and the plan in Eq. 2.2 corresponds
to a model of Π≺.

Indeed, if Π is the domain in the example and COMPUTEPATTERN(Π) in
the SPP(Π) procedure in Figure 2.1 returns the complete pattern in Eq. 2.5,
SPP(Π) will return a plan when n = 1, i.e., at the first iteration in which ≺ is
not empty.

Theorem 2.3. Let Π be a numeric planning problem. Let ≺ be a pattern. The
SPP ≺-encoding Π≺ is correct and complete.

Proof. Let ≺ = a1; a2; . . . ; ak, k ≥ 0. For Π = ⟨VB, VN , A, I, G⟩, let Π∅ be
the numeric planning problem Π without goals, i.e., Π∅ = ⟨VB, VN , A, I, ∅⟩.
Clearly, any executable sequence of actions (even the empty one) is a plan for
Π∅.

Correctness. We first prove the correctness of the encoding considering
the planning problem Π∅. Specifically, we first prove that if µ is a model of
Π≺∅ then π = a

µ(a1)
1 ; a

µ(a2)
2 ; . . . ; a

µ(ak)
k is a plan of Π∅ and sk = res(π, I) is such

that, for each state variable v ∈ VB ∪ VN , sk(v) = µ(σk(v)) = µ(v′). The proof
is by induction on the length k of ≺. If k = 0, then ≺ = π = ϵ and the thesis
follows since the empty sequence of actions is a valid plan, sk = I and Π≺∅
reduces to

Π≺∅ = I(X) ∧
∧
v∈VB

v ≡ v′ ∧
∧
v∈VN

v = v′.

If k = i+1 > 0, let πi = a
µ(a1)
1 ; a

µ(a2)
2 ; . . . ; a

µ(ai)
i and π = πi; a

µ(ak)
k . By induction

hypothesis, si = res(πi, I) is defined and for each state variable v ∈ VB ∪ VN ,
si(v) = µ(σi(v)). Then, both sk = res(a

µ(ak)
k , si) is defined, and for each state

variable v ∈ VB ∪ VN , sk(v) = µ(σk(v)) = µ(v′), hold for every possible value

2.2 Symbolic Pattern Planning 31

of µ(ak). When µ(ak) = 0, aµ(ak)k = ϵ, sk = si and for each state variable
v ∈ VB ∪ VN , µ(v′) = µ(sigmak(v)) = µ(σi(v)). When µ(ak) > 0, the thesis
follows from Theorem 2.2. Now consider a model µ of Π≺. Then, µ is also
a model of Π≺∅ and π is a plan of Π∅. The fact that the state sk = res(π, I)

satisfies G follows from the fact that for each state variable v ∈ VB ∪ VN ,
sk(v) = µ(σk(v)) = µ(v′) and µ satisfies G(X ′).

Completeness. Given the definition of completeness for the ≺-encoding,
we have to prove that if Π admits a plan which is a subsequence of ≺, then
Π≺ is satisfiable. Let π be a valid plan of length n ≤ k of Π which is also a
subsequence of ≺. Let sn be the last state induced by π. Then, if we consider
π as a pattern and build Ππ, the assignment µ extending I, assigning all the
actions in Aπ to 1 and such that, for each variable v′ ∈ X ′, µ(v′) = sn(v) is
a model of Ππ. The proof is by induction on n and analogous to the proof
done for correctness, by first considering Π∅. Then, Ππ is equivalent to the
formula obtained from Π≺ substituting each action variable not in π with 0,
and hence Π≺ is satisfiable.

Due to Theorem 2.1 and Theorem 2.3, for any numeric planning problem
Π, the SPP(Π) procedure in Figure 2.1 is correct and complete.

2.2.3 Pattern Computation

Consider a numeric planning problem Π = ⟨VB, VN , A, I, G⟩.

Though the SPP(Π) procedure in Algorithm 2.1 is guaranteed to be correct
and complete for any complete pattern ≺I returned by COMPUTEPATTERN(Π),
it is clear that its performance may critically depend on ≺I , as shown also by
our running example.

Example 2.4. As already seen, if the pattern ≺ is as shown in Eq. 2.5, then
Π≺ is satisfiable. Thus, if ≺I = ≺, then SPP(Π) returns a plan after n = 1

concatenations of ≺I . On the other hand, if ≺I is the sequence obtained reversing
Eq. 2.5, i.e.,

lftl;rgtr;disc;exch;conn;rgtl;lftr;rle;lre (2.6)

then SPP(Π) returns a plan after n = 5 concatenations of ≺I .

32 SPP in Classical and Numeric Planning

Even considering the SPP(Π) procedure in Algorithm 2.1 modified to
compute a (possibly) brand new n-complete pattern at each iteration (as
discussed at the end of subsection 2.2.1), the problem is how to easily (i.e.,
in polynomial time) compute a “good” pattern. To address this problem,
consider a pattern ≺ = a1; . . . ; ak, k ≥ 0. Our desiderata are to compute a
pattern ≺′ such that

1. for each action a ∈ A, the number of occurrences of a in ≺′ is at most
equal to the number of occurrences of a in ≺, and

2. ≺′ dominates ≺, i.e., such that Π≺ satisfiability implies Π≺′ satisfiability.

The first requirement is necessary, as it is easy to satisfy the second one by
simply adding action occurrences to ≺. Indeed, by adding an action to ≺, we
obtain a new pattern that strongly dominates the previous one. A pattern
≺′ strongly dominates ≺ if and only if for any planning problem Π′ possibly
differing from Π only in the initial state I and goal G, Π′≺ satisfiability implies
Π′≺

′ satisfiability. Of course, if ≺′ strongly dominates ≺, then ≺′ dominates ≺.

Theorem 2.4. Let Π be a numeric planning problem. Let ≺ be a pattern. Let a
be an action in Π. Let ≺+ a be a pattern obtained by inserting a in ≺. ≺+ a

strongly dominates ≺.

Proof. Let ≺ = a1; . . . ; ak and ≺ + a = a1; . . . ; ai; a; ai+1; . . . ; ak, 0 ≤ i ≤ k.
≺+ a strongly dominates ≺, since each model µ of T ≺ can be extended to a
model µ′ of T ≺+a with µ′(a) = 0.

According to the theorem, removing actions from the pattern ≺ produces
a new pattern ≺′ which, at least theoretically, will not allow us to solve more
problems: the best we can get is that ≺ and ≺′ are equivalent or strongly
equivalent. A pattern ≺′ is equivalent (resp. strongly equivalent) to ≺ if and
only if ≺′ dominates (resp. strongly dominates) ≺ and vice versa. However,
on the practical side, a pattern with fewer actions produces formulas with
less variables which are likely to be easier to solve.

For the above reasons, we first concentrate on determining sufficient
conditions allowing to improve a pattern by removing action occurrences
from it. Then, we present conditions allowing to prove when swapping
two actions leads to a new pattern which (strongly) dominates the original

2.2 Symbolic Pattern Planning 33

one. Finally, we show how we can effectively build a pattern based on the
previously presented findings.

In the following, for each i ∈ [0, k] and state s, we inductively define the
set R≺i

s of states reachable with ≺i starting from the state s, as

1. Rϵ
s = {s} for i = 0, and

2. for i > 0, as the smallest set containing the states res(ami , s) whenever
s ∈ R≺i−1

s , ami is executable in s, m ≥ 0 and also m ≤ 1 if a is not eligible
for rolling.

Intuitively, R≺i
s represents the set of states which are the result of executing

each action in ≺i, for 0, 1 or more times (if eligible for rolling), starting from
s used as initial state. From the definition, for i > 0, it follows that

1. for any state s, R≺i−1
s ⊆ R≺i

s ,

2. for any pattern ≺′, if R≺I ⊆ R≺
′

I then ≺′ dominates ≺, and

3. for any pattern≺′ and for any state s, R≺s ⊆ R≺
′

s if and only if≺′ strongly
dominates ≺.

Improving Patterns by Removing Action Occurrences

Consider an action occurrence ai in the pattern ≺ and the problem of deter-
mining when ai can be removed from ≺, still obtaining an equivalent pattern.
In general, this is possible if R≺i−1

I = R≺i
I , i.e., when the execution of ami in

any state in R
≺i−1

I does not lead to any new state, for any m ≥ 0. Indeed,
checking whether this condition holds is far from being trivial, since in general
it amounts to check the unsatisfiability of the formula

I(X) ∧ ∃a1 . . . ∃ai.T ≺i(X ,A≺i ,X ′) ∧ ¬∃a1 . . . ∃ai−1.T ≺i−1(X ,A≺i−1 ,X ′).

Apart from the cases in which we can easily check that executing ai does not
affect the state in which it is executed (as, e.g., in the case of the example in
which ai is the first action lre in the pattern in Eq. 2.5), we can simplify the
pattern by removing ai

34 SPP in Classical and Numeric Planning

1. when ai+1 is another occurrence of the action ai and ai is eligible for
rolling, or

2. when ai is not executable in any state in a superset of R≺i−1

I (assuming
such superset can be easily computed).

Theorem 2.5. Let Π be a numeric planning problem. Let ≺ = a1; . . . ; ak be a
pattern, k ≥ 0. Let i ∈ [1, k] and assume that

1. i < k, ai = ai+1 and ai is eligible for rolling, or

2. ai is not executable in any state of R≺i−1

I .

Then, we can remove ai from ≺ and obtain an equivalent pattern.

Proof. We prove the two statements separately.

1. If ai is eligible for rolling, given a model µ of Π≺, the assignment µ′

differing from µ only for the interpretation of ai and ai+1 and such that
µ′(ai) = µ(ai) + µ(ai+1) and µ′(ai+1) = 0 is a model of Π≺ and hence of
Π≺

′.

2. If ai is not executable in any state of R≺i−1

I then R≺i−1

I = R≺i
I and hence

the thesis.

Corollary 2.1. In the hypothesis of the previous theorem, the pattern

a1; . . . ; ai−1; ai+1; . . . ; aj; ai; aj+1; . . . ak

with i < j ≤ k obtained from ≺ by moving ai after aj, dominates ≺.

Proof. From Theorem 2.5, we can remove ai from ≺ and obtain an equivalent
pattern ≺′. From Theorem 2.4, adding an action to ≺′ leads to a new pattern
dominating ≺′ and hence also ≺.

Considering the theorem, it is relatively easy to check when the first
condition of the Theorem is met. For instance, if we consider the pattern
obtained by concatenating the actions in Eq. 2.5 and in Eq. 2.6, we obtain
two consecutive occurrences of the action lftl in the resulting pattern:

2.2 Symbolic Pattern Planning 35

since lftl is eligible for rolling, one of such two occurrences can be safely
removed.

About the second condition of the Theorem, it is possible in polynomial
time to compute a superset of R≺i−1

I and check ai executability in any of
its states, by using the Asymptotic Relaxed Plan Graph (ARPG) construction
[Scala et al., 2016b]. An ARPG is a digraph of alternating state (Si) and
action (Ai) layers, which, starting from the initial state layer, outputs a
partition A1, . . . , Ak on the set of actions. In state layers, numeric variables
are represented as intervals and boolean variables as literals. In the state
layer S0 appear unit intervals (e.g., [3, 3]) and literals based on the initial
condition. In the action layer Ai appear only actions which preconditions
can be achieved by the intervals and literals in Si. The state layer at Si+1 is
obtained by extending the intervals and literal of Si with the effects of all the
actions of Ai. For example, if the interval for x in Si is the unit interval [3, 3]
and an action in Ai increases x by 1, then the interval in Si+1 becomes [3,∞]

since the action could be repeated multiple times, if instead an action of Ai
deletes v, then Si+1 will contain ¬v. Notice that bot v and ¬v can appear
in the same state layer. The layers are extended until a fix point is reached.
Since repetitions are not allowed, the construction of the ARPG is guaranteed
to reach a fix point at the layer k+1 when Ak+1∩Ak = ∅. If a ∈ Ai+1 then any
sequence of actions which contains a and which is executable in the initial
state, contains at least an action b ∈ Ai (0 ≤ i < k). In the computed pattern,
a precedes b if a ∈ Ai and b ∈ Aj with 1 ≤ i < j ≤ k, while actions in the
same partition are arbitrarily ordered.

We will denote the superset of R≺i−1

I computed with ARPG with R
≺i−1
ARPG .

Here we convey the basic ideas of the ARPG and properties by considering our
running example, which will be used also to show an application of the first
condition of the Theorem.

Example 2.5. In the ARPG construction, each Boolean variable is associated
to the set of values it can assume, and each numeric variable is associated to a
convex interval representing an overapproximation of the set of values it can
assume. A relaxed state is then an assignment in which each variable gets a
value in the associated set of values. Starting from the representation Rϵ

ARPG of

36 SPP in Classical and Numeric Planning

the initial state,

RϵARPG = {⟨p, {⊥}⟩, ⟨xl, [−XI ,−XI]⟩, ⟨xr, [XI , XI]⟩, ⟨ql, [Q,Q]⟩, ⟨qr, [0, 0]⟩, ⟨q, [1, 1]⟩},

given the i-th action ai whose preconditions are satisfied by some relaxed state
in R≺i

ARPG, R≺i;ai
ARPG is obtained by modifying the interval associated to each variable

assigned by ai to include the possible new values the variable can assume after
the consecutive execution of ai for finitely many times. For instance, considering
the set Rlre;rle;lftr;rgtl

I representing the set of states reachable with the initial
pattern lre;rle;lftr;rgtl of the pattern in Eq. 2.5, the corresponding
superset Rlre;rle;lftr;rgtl

ARPG computed with ARPG is

{⟨p, {⊥}⟩, ⟨xl, [−XI ,+∞)⟩, ⟨xr, (−∞, XI]⟩, ⟨ql, [Q,Q]⟩, ⟨qr, [0, 0]⟩, ⟨q, [−1, 1]⟩}.

See [Scala et al., 2016b] for more details. Thus, assuming ≺ is as shown in
2.5, the i-th action in the pattern is executable in at least one state in the
overapproximation of the set of states R≺i−1

I computed with ARPG. Further, there
are no two consecutive occurrences of a same action, and thus it is not possible to
simplify the pattern ≺ by removing some action using the two proposed methods.

On the other hand, if ≺ is as shown in Eq. 2.6, then the set Rlftl;rgtr
ARPG ,

representing the superset of the states reachable from Rϵ
ARPG by executing the first

2 actions in the pattern of Eq. 2.6, is

{⟨p, {⊥}⟩, ⟨xl, (−∞,−XI]⟩, ⟨xr, [XI ,+∞)⟩, ⟨ql, [Q,Q]⟩, ⟨qr, [0, 0]⟩, ⟨q, [1, 1]⟩}.

Then, the action disc is not executable in any state represented by Slftl;rgtr
ARPG

(and thus Rlftl;rgtr;disc
ARPG = Rlftl;rgtr

ARPG), and similarly for the actions exch, and
conn. Thus, we can remove such actions from Eq. 2.6 and obtain an equivalent
pattern.

Notice that starting from the representation of the initial state at level l = 0,
we can

1. extend the ARPG construction by inserting the action level l consisting of
the actions whose preconditions are relaxed-satisfied at that level,

2. compute the relaxed representation of the state at level l + 1 which are
reachable given the execution of the actions at level l, and

2.2 Symbolic Pattern Planning 37

3. iterate the process until no more new actions can be introduced.

The result is that each action in the ARPG has an associated level, in our case:

level 0 : lftl,rgtl,lftr,rgtr,rle,lre,

level 1 : conn,

level 2 : disc,exch,

(2.7)

corresponding to a partial order of actions. By construction, if an action ai at
level l precedes all the actions with level < l in the pattern ≺, then a is not
executable in any state in R≺i−1

I and moving ai after all the actions at level < l

leads to a dominating pattern.

As the example makes clear, building the pattern by extending the partial
order given by the ARPG construction ensures that no action can be removed
based on the results in this section.

Improving Patterns by Swapping Action Occurrences

Consider a pattern ≺′ = a1; . . . ; ai−1; ai+1; ai; ai+2; . . . ; ak, 0 ≤ i ≤ k, differing
from ≺ only because now ai+1 precedes ai in ≺′. As usual, ≺i−1 = ≺′i−1 =

a1; . . . ; ai−1 while ≺i = ≺i−1; ai ̸= ≺′i = ≺′i−1; ai+1 and ≺i+1 = ≺i; ai+1 ̸=
≺′i+1 = ≺′i; ai. We now define sufficient conditions under which ≺′ (strongly)
dominates or is (strongly) equivalent to ≺.

Clearly, for any state s ∈ R
≺i−1

I if ami , m ≥ 1, (resp. ani+1, n ≥ 1) is
executable in s then res(ami , s) (resp. res(ani+1, s)) belongs to both R≺i+1

I and

R
≺′

i+1

I , and so the possible differences between R
≺i+1

I (resp. R≺I) and R
≺′

i+1

I

(resp. R≺
′

I) come from executing either ami ; a
n
i+1 or ani+1; a

m
i in s. From this,

it follows that ≺ and ≺′ are strongly equivalent when ai and ai+1 do not
mutually interfere. Given two actions a and a′,

1. a does not interfere with the executability of a′ if for each assignment
x := e of a, x does not occur in the preconditions of a′;

2. a does not interfere with the effects of a′ if for each assignment x := e

of a (i) x does not occur in the assignments of a′, or (ii) both a and
a′ assign x with a linear increment, or (iii) x := e is also a simple
assignment of a′;

38 SPP in Classical and Numeric Planning

3. a and a′ do not mutually interfere if a does not interfere with the
executability and the effects of a′ and also a′ does not interfere with the
executability and effects of a.

Theorem 2.6. Let Π be a numeric planning problem. Let ≺ = a1; . . . ; ak be a
pattern, k ≥ 2. Let i ∈ [1, k). Let ≺′ be the pattern differing from ≺ only because
ai+1 precedes ai in ≺′. If ai and ai+1 do not mutually interfere, ≺ and ≺′ are
strongly equivalent.

Proof. If ai and ai+1 do not mutually interfere, then for any state s, and for
any m,n ≥ 0,

1. res(ani+1, res(a
m
i , s)) is defined if and only if both ami and ani+1 are exe-

cutable in s,

2. res(ami , res(a
n
i+1, s)) is defined if and only if both ami and ani+1 are exe-

cutable in s,

3. res(ami , res(a
n
i+1, s)) = res(ani+1, res(a

m
i , s)) if both ami and ani+1 are exe-

cutable in s.

The above facts follow from the non-mutual interference of ai and ai+1.

Assume ≺ and ≺′ are not strongly equivalent. Then, for some initial state
s, there is a goal state, e.g., in R≺s which is not in R≺

′
s , which is possible

only if there exists a state s′′ = res(ani+1, res(a
m
i , s

′)) with s′ ∈ R≺i−1
s , m,n ≥

0, s′′ in R
≺i+1
s but not in R

≺′
i+1

s . However, this is not possible since also
res(ami , res(a

n
i+1, s

′)) is defined and equal to s′′.

Given the Theorem, the problem of determining whether ≺ dominates
and/or is dominated by ≺′ arises when ai and ai+1 mutually interfere. Clearly,
if ai and ai+1 interfere in their effects, for some state s and m,n ≥ 1, we may
have that executing ami ; a

n
i+1 or ani+1; a

m
i in s leads to a different state and thus,

in the general case, ≺′ does not strongly dominate ≺ and ≺ does not strongly
dominate ≺′. However, when either ai blocks ai+1 or ai+1 supports ai and ai
does not interfere with the executability of ai+1, then ami ; a

n
i+1 is executable in

a subset of the states in which ani+1; a
m
i is executable. An action a

2.2 Symbolic Pattern Planning 39

1. blocks an action a′ if a′ contains a precondition which becomes contra-
dictory once the variables v are substituted with e whenever v := e is a
simple assignment in eff(a), and

2. supports a′ if a interferes with the executability of a′ and for each
precondition p of a′ containing a variable v assigned by a, (i) v is
assigned by a with a simple assignment, and (ii) p becomes valid once
each variable v is substituted with e whenever v := e ∈ eff(a).

The above definitions of an action blocking/supporting another action are
similar to the notion of disabling/enabling action in [Wehrle and Rintanen,
2007] in the classical setting. In particular, when restricting to the classical
case, our notion of blocking is equivalent to the notion of disabling, while
if a supports a′ our definition is stricter since it entails that a does not block
a′, a condition which does not necessarily hold if a enables a′, see [Wehrle
and Rintanen, 2007]. If ami ; a

n
i+1 is executable in a subset of the states in

which ani+1; a
m
i is executable, and ai and ai+1 do not mutually interfere in their

effects, then ≺′ strongly dominates ≺.

Theorem 2.7. Let Π be a numeric planning problem. Let ≺ = a1; . . . ; ak be
a pattern, k ≥ 2. Let i ∈ [1, k). Let ≺′ be the pattern, differing from ≺ only
because ai+1 precedes ai in ≺′. Assume that ai and ai+1 do not mutually interfere
in their effects. Assume that either (i) ai blocks ai+1, or (ii) ai+1 supports ai and
ai does not interfere with the executability of ai+1. Then ≺′ strongly dominates
≺.

Proof. In the hypotheses of the theorem, we prove that for any state s, R≺i+1
s ⊆

R
≺′

i+1
s . Let s be an arbitrary state.

For any m,n ≥ 0, we prove that if s′′ ∈ R≺i+1
s , i.e., if s′′ = res(ami ; a

n
i+1, s

′)

for some state s′ ∈ R≺i−1
s , then s′′ = res(ani+1; a

m
i , s

′) and thus s′′ ∈ R≺
′
i+1

s .

For either m = 0 or n = 0, the sequence ami ; a
n
i+1 is equal to the sequence

ani+1; a
m
i and hence res(ami ; a

n
i+1, s

′) = res(ani+1; a
m
i , s

′) and the thesis trivially
follows.

Assume m ≥ 1. If ai blocks ai+1 then ai+1 is not executable in res(ami , s)

and thus n = 0, and this case is already covered by the previous one.

40 SPP in Classical and Numeric Planning

Assume also n ≥ 1. If ai does not interfere with the executability and
the effects of ai+1 then since ani+1 is executable in res(ami , s

′), ani+1 is also
executable in s. Further, since ai+1 supports ai, ai is executable in res(ani+1, s

′).
Given that res(ani+1; a

m
i , s

′) is defined, res(ami ; a
n
i+1, s

′) = res(ani+1; a
m
i , s

′) fol-
lows from the hypothesis that ai and ai+1 do not mutually interfere in their
effects.

Example 2.6. According to our definitions and considering the sets of actions at
each level of the ARPG as in Eq. 2.7

1. for level 0, each pair of distinct actions at this level do not mutually
interfere except for the pairs {lftl,lftr}, {rgtl,rgtr}, {lre,rle}.
Further, no action at this level blocks or supports another action at the
same level.

2. level 1 consists of the single action conn, and

3. for level 2, the action disc blocks the action exch.

Given the above, given two patterns ≺ and ≺′ extending the partial order induced
by the ARPG, if disc follows exch in ≺, ≺ strongly dominates ≺′. Notice that
the last three actions in ≺ are as in conn;exch;disc, where conn precedes
exch because of the ARPG, and exch precedes disc because disc blocks exch.
The fact that conn;exch is better than exch;conn is also a consequence of
Theorem 2.7: conn supports exch, the two actions do not interfere in their
effects and exch does not interfere with the executability of conn. Indeed,
the order induced by the ARPG construction may correspond to the supporting
relation (as in this case), but this is not always the case. Consider for example the
modification of the example in which the two robots start in the same position
and are already paired. In such a case, xl = xr and p = ⊤ holds at level 0 and
conn, exch and disc will all be at the same ARPG level. According to the ARPG

partial ordering, the three actions can be put in any ordering, while Theorem 2.7
allows us to conclude that the pattern conn;exch;disc strongly dominates
the other 5 orderings.

2.2 Symbolic Pattern Planning 41

2.2.4 Plan Quality

Thanks to Theorem 2.3, we know that any model µ of Π≺ corresponds to
the valid plan π = a

µ(a1)
1 ; a

µ(a2)
2 ; . . . ; a

µ(ak)
k . However, the discovered plan may

include redundant actions.

Example 2.7. Assume, as in Example 2.1, that the initial state is I = {p =

⊥, xl = −XI , xr = XI , ql = Q, qr = 0, q = 1}, where XI , Q are positive integers,
and that G = {ql = 0, qr = Q, xl = −XI , xr = XI}.

If the pattern is computed using the ARPG construction outlined in the previous
subsection, extended to order two actions at the same level using the results of
Theorem 2.7, the pattern ≺I returned by COMPUTEPATTERN(Π) in Algorithm
2.1 is, e.g.,

≺I = lftl;rgtl;lftr;rgtr;rle;lre;conn;exch;disc,

and the procedure SPP(Π) will determine the existence of a plan after two
concatenations of the above pattern, i.e., with

≺ = lftl1;rgtl1;lftr1;rgtr1;rle1;lre1;conn1;exch1;disc1;

lftl2;rgtl2;lftr2;rgtr2;rle2;lre2;conn2;exch2;disc2.

The model µ returned by SOLVE(Π≺) will be such that

µ(lftl1) = k, µ(rgtl1) = k +XI ,

µ(lftr1) = XI , µ(rgtr1) = 0,

µ(rle1) = m, µ(lre1) = n,

µ(conn1) = 1, µ(exch1) = Q, µ(disc1) = 1,

µ(lftl2) = p+XI , µ(rgtl2) = p,

µ(lftr2) = 0, µ(rgtr2) = X,

µ(rle2) = q, µ(lre2) = r,

µ(conn2) = µ(exch2) = µ(disc2) = 0,

for some k,m, n, p, q, r ≥ 0 with m,n, q, r ≤ 1 and n = 1 when m = 1. Any such
plan corresponds to

1. having the left robot going to the left for k times (µ(lftl1) = k) and then
to the right for k +X times (µ(rgtl1) = k +XI) to reach the origin,

42 SPP in Classical and Numeric Planning

2. having the right robot going directly to the origin (µ(lftr1) = XI ,
µ(rgtr1) = 0),

3. possibly enabling the right-to-left exchange (µ(rle1) = m ∈ [0, 1]) and
then surely enabling the left-to-right exchange (µ(lre1) = 1) when
µ(rle1) = 1,

4. connecting, exchanging Q objects and disconnecting (µ(conn1) = 1,
µ(exch1) = Q, µ(disc1) = 1),

5. having the left robot going to the left for p+XI times (µ(lftl2) = p+XI)
and then to the right for p times (µ(rgtl2) = p) to reach the position it
originally had,

6. having the right robot go directly to its original position (µ(lftr2) = 0,
µ(rgtr2) = XI),

7. enable or not the left-to-right and/or the right-to-left exchange (µ(rle2) =
q, µ(lre2) = r).

In such plans, some actions can be executed even if unnecessary (e.g., lftl1,
lre) or can be executed more times than necessary (e.g., lftl1). This does
not happen when k = m = n = p = q = r = 0. In particular, k = 0 (resp.
p = 0) corresponds to preventing the left robot from going unnecessarily to the
left before (resp. after) connecting.

Notice that if rolling is disabled (i.e., if for every action a, (a = 0 ∨ a = 1) is
imposed),

1. ≺I needs to be concatenated at least 2XI +Q times in ≺ before SOLVE(Π≺)

becomes satisfiable, but

2. when ≺ is ≺I concatenated 2XI +Q times, in any plan corresponding to
a model of Π≺, (i) no lftl useless action occurs before the exch action,
and (ii) no useless rgtl action occurs after the exch action.

Analogously, if in SPP(Π) we do not allow executing two actions which are
part of a same ≺I unless they do not mutually interfere (i.e., if for every pair of
distinct mutually interfering actions a and a′ in ≺I , (a = 0∨ a′ = 0) is imposed),

1. ≺I needs to be concatenated at least 5 times in ≺ before SOLVE(Π≺)

becomes satisfiable, but

2.2 Symbolic Pattern Planning 43

2. when ≺ is ≺I concatenated 5 times, in any plan corresponding to a model
of Π≺, (i) no lftl useless action occurs before the exch action, and (ii)

no useless rgtl action occurs after the exch action.

As the example shows, the plan returned by SPP(Π) may include un-
necessary actions, especially when allowing for action rolling and/or the
execution of mutually interfering actions which are part of the same initially
computed pattern ≺I . This fact is not surprising if SOLVE(Π≺) is only required
to compute one of the possibly infinitely many models of Π≺. Indeed, in some
applications, it may be useful to look for a model µ whose corresponding plan
π is minimal according to some criteria. In the literature, the following mini-
mality conditions have been defined and studied, especially in the classical
setting (see, e.g., [Bercher et al., 2024] for a recent survey on the topic):

1. ≺-minimality: there should not be another model µ′ whose correspond-
ing plan has fewer actions than µ,

2. π-minimality: there should not be another model µ′ whose correspond-
ing plan is a subsequence of π.

Any model satisfying one of the above two conditions corresponds to an
non-redundant plan π: removing some actions in π leads to an invalid plan.
Though returning an non-redundant plan may be a desirable property, it
comes with an extra price, since it is well known that checking whether a
plan is non-redundant is already co-NP-hard in the classical setting with no
numeric variables (see, e.g., [Bercher et al., 2024]).

Indeed, checking non-redundancy amounts to verifying the non-existence
of a shorter plan. In our case, a model µ with the corresponding plan π is
≺-optimal if it minimizes

∑k
i=1 ai, and is π-optimal if it minimizes

∑k
i=1 ai

and also satisfies a ≤ µ(a), for each action a.

It is thus possible to find a ≺-optimal and/or π-optimal plans if the
SMT solver also supports the minimization of

∑k
i=1 ai, as, e.g., Z3 v4.12.2

[de Moura and Bjørner, 2008], does. Other solutions to improve the quality
of the returned plan are possible. Bofill et al. (2016) propose (i) to call a
standard SMT solver for finding an initial model µ of Π≺, and then (ii) call a
MaxSMT solver on the problem Πµ ∪ {ai = 0 : µ(ai) = 0, i ∈ [1, k]} together
with {ai = 0 : µ(ai) > 0, i ∈ [1, k]}, the latter treated as soft clauses (see the

44 SPP in Classical and Numeric Planning

paper for more details). Building on the concepts introduced in classical plan-
ning by Giunchiglia and Maratea (2007), another possibility for effectively
computing models µ with a maximal set of actions a such that µ(a) = 0 is
to prioritize the search for these solutions in the solver’s heuristic, and some
SMT solvers, such as MATHSAT5 [Cimatti et al., 2013], offer native support
for specifying the order in which the heuristic should operate. Both these
methods allow computing a non-redundant plan, assuming rolling actions is
not possible.

In any case, while these methods may reduce the number of executed
actions, they do not guarantee the return of an optimal plan, i.e., of the
shortest possible plan of Π. Indeed, such an optimal plan may not be a
subsequence of the selected ≺ and thus it may not correspond to a model of
Π≺.

2.3 Relation to Planning as Satisfiability Encod-

ings

Let Π = ⟨VB, VN , A, I, G⟩ be a numeric planning problem.

As outlined in Chapter 1, in the standard planning as satisfiability frame-
work the problem of finding a solution is solved by (i) considering n copies of
a logical model of how actions cause transitions from one state to another, and
(ii) checking the existence of a solution starting with n = 0 transitions, and
incrementing n upon failure, see, e.g., [Kautz and Selman, 1992]. Different
approaches have been proposed, each characterized by how the transitions
from one state to another are encoded as a logical formula.

In this section, we present the rolled-up and standard encodings (subsec-
tion 2.3.1), the R2∃ encoding (subsection 2.3.2), and how they are related to
our pattern encoding when used in the planning as satisfiability framework
(subsection 2.3.3).

2.3 Relation to Planning as Satisfiability Encodings 45

2.3.1 Rolled-up and Standard Encodings

In the state-of-the-art rolled-up encoding ΠR of Π proposed in [Scala et al.,
2016d], each action a ∈ A is defined as an action variable which can get an ar-
bitrary value k ∈ N, corresponding to have k (consecutive) occurrences of a.5

Then, the symbolic transition relation T R(X ,A,X ′) of ΠR is the conjunction
of the formulas in the following sets:

1. preR(A), consisting of, for each a ∈ A, v = ⊥ and w = ⊤ in pre(a),

a > 0→ (¬v ∧ w),

and, for each a ∈ A and ψ ⊵ 0 in pre(a),

a > 0→ ψ ⊵ 0, a > 1→ ψ[a]⊵ 0,

where ψ[a] is the linear expression obtained from ψ by substituting each
variable x with

(a) x+(a− 1)×ψ1, whenever x += ψ1 ∈ eff(a) is a linear increment,

(b) ψ1, if x := ψ1 ∈ eff(a) is a simple assignment.

The last two formulas ensure that ψ ⊵ 0 holds in the states in which the
first and the last execution of a happens (see [Scala et al., 2016d]).

2. effR(A), consisting of, for each a ∈ A, v := ⊥, w := ⊤, linear increment
x += ψ and general assignment y := ψ1 in eff(a),

a > 0→ (¬v′ ∧ w′ ∧ x′ = x+ a× ψ ∧ y′ = ψ1).

3. frameR(VB ∪ VN), consisting of, for each variable v ∈ VB and w ∈ VN ,

(
∧
a:v:=⊤∈eff(a) a = 0 ∧∧

a:v:=⊥∈eff(a) a = 0)→ v′ ≡ v,R∧
a:w:=ψ∈eff(a) a = 0→ w′ = w.

4. mutexR(A), consisting of (a1 = 0 ∨ a2 = 0), for each pair of distinct
actions a1 and a2 which are in mutex. Two distinct actions a1 and a2 are

5To ease the presentation, our definition of ΠR considers just the cases α = 0 and α = 1
of Theorem 1 in [Scala et al., 2016d], as we did in the previous section.

46 SPP in Classical and Numeric Planning

in mutex whenever there exists a variable assigned by a1 which occurs
either in pre(a2) or in the right-hand side of an assignment in eff(a2).6

5. amoR(A), consisting of, for each action a not eligible for rolling,

(a = 0 ∨ a = 1).

Notice that if for action a the formula (a = 0∨a = 1) belongs to T R(X ,A,X ′),
we can equivalently (i) define a as a Boolean variable, and then (ii) re-
place a = 0, a > 0, a = 1 and a > 1 with ¬a, a, a and ⊥, respectively, in
T R(X ,A,X ′). It is clear that if T R(X ,A,X ′) contains (a = 0 ∨ a = 1) for any
action a, then the rolled-up encoding ΠR reduces to the standard encoding
as defined, e.g., in [Leofante et al., 2020]. Equivalently, in the standard
encoding ΠS of Π, the symbolic transition relation T S(X ,A,X ′) is obtained
by adding, for each action a, (a = 0 ∨ a = 1) to T R(X ,A,X ′). The decoding
function of the rolled-up (resp. standard) encoding associates to each model
µ of T R(X ,A,X ′) (resp. T S(X ,A,X ′)) the sequences of actions in which
each action a occurs µ(a) times. The rolled-up and standard encoding are
correct and complete [Scala et al., 2016d].

Theorem 2.8 (Scala et al. (2016d)). Let Π be a numeric planning problem.
The planning as satisfiability rolled-up encoding ΠR and the standard encoding
ΠS are both correct and complete.

2.3.2 Relaxed-Relaxed ∃ (R2∃) Encoding

A problem with the rolled-up and standard encodings is the presence of the
axioms in mutex(A), which forces some actions to be set to 0 even when
there exists an ordering allowing to execute them sequentially starting from
a state s, see, e.g., [Rintanen et al., 2006]. Indeed, allowing to set more
actions to a value > 0 while maintaining correctness and completeness of
the encoding, allows finding solutions to Eq. 1.2 with a lower value for the
bound. Several proposals along these lines have been made. Here we present

6Notice that if two actions are in mutex, then they are also in mutual exclusion, while the
vice versa does not necessarily hold. For instance, two actions a1 and a2 with x := x+ 1 in
their effects are in mutex but do not mutually interfere, and allowing for both a1 > 0 and
a2 > 0 in the R encoding may allow for models not corresponding to valid plans.

2.3 Relation to Planning as Satisfiability Encodings 47

the R2∃ encoding presented in [Bofill et al., 2017] which is arguably the
state-of-the-art encoding in which actions are encoded as Boolean variables
(though there exist cases in which the ∃-encoding presented in [Rintanen
et al., 2006] allows solving Eq. 1.2 with a value for the bound lower than the
one needed by the R2∃ encoding).

In the R2∃ encoding, action variables are Boolean and assumed to be
ordered according to a given total order. Different orderings lead to different
R2∃ encodings. In the following, we represent the total ordering as a simple
and complete pattern.

Consider a simple and complete pattern ≺ = a1; a2; . . . ; ak, k ≥ 0. We
denote the R2∃ ≺-encoding of Π as ΠR2∃,≺. In ΠR2∃,≺, for each action a and
variable v assigned by a, a newly introduced variable va with the same domain
of v is added to the set X of state variables. Intuitively, each new variable
va represents the value of v after the sequential execution of some actions
in the initial sequence of ≺ ending with a. The symbolic transition relation
T R2∃,≺(X ,A,X ′) of ΠR2∃,≺ is the conjunction of the formulas in the following
sets:

1. preR
2∃,≺(A), consisting of, for each a ∈ A, v = ⊥, w = ⊤ and ψ ⊵ 0 in

pre(a),
a→ (¬v≪,a ∧ w≪,a ∧ ψ≪,a ⊵ 0),

where, for each variable x ∈ VB ∪ VN , x≪,a stands for the variable (i) x,
if there is no action preceding a in ≺ assigning x; and (ii) xb, if b is the
last action assigning x preceding a in ≺. Analogously, ψ≪,a is the linear
expression obtained from ψ by substituting each variable x ∈ VN with
x≪,a.

2. effR
2∃,≺(A), consisting of, for each a ∈ A, v := ⊥, w := ⊤ and general

assignment x := ψ in eff(a),

a→ (¬va ∧ wa ∧ xa = ψ≪,a),

¬a→ (va ↔ v≪,a ∧ wa ↔ w≪,a ∧ xa = x≪,a).

3. frameR
2∃,≺(VB ∪VN), consisting of, for each variable v ∈ VB and w ∈ VN ,

v′ ↔ v≪,g, w′ = w≪,g,

48 SPP in Classical and Numeric Planning

where g is a dummy action following all the other actions in ≺.

The decoding function of the R2∃ ≺-encoding associates to each model µ
of T R2∃,≺(X ,A,X ′) the sequence of actions obtained from ≺ by deleting
the actions a with µ(a) = ⊥. In the R2∃ ≺-encoding, there are no mutex
axioms and the size of T R2∃,≺(X ,A,X ′) is linear in the size of Π. However, it
introduces many new state variables (in the worst case, |VB ∪ VN | × |A|). The
R2∃ ≺-encoding of Π is correct and complete.

Theorem 2.9 (Bofill et al. (2017)). Let Π be a numeric planning problem.
Let ≺ be a simple and complete pattern. The planning as satisfiability R2∃
≺-encoding ΠR2∃,≺ is correct and complete.

2.3.3 Relationships Among the Standard, Rolled-up, Relaxed-

Relaxed Exists and Pattern Encodings

Consider a simple and complete pattern ≺. Since ≺ is simple and complete,
the ≺-symbolic transition relation T ≺(X ,A≺,X ′) can be used in the planning
as satisfiability framework, allowing for a direct comparison between the so
far proposed planning as satisfiability encoding and the ≺-encoding in the
planning as satisfiability framework. Given this, we write

1. ΠS,≺ for the planning as satisfiability encoding in Eq. 1.1 in which the
symbolic transition relation T (X ,A,X ′) is T ≺(X ,A≺,X ′) as defined in
subsection 2.2.2, and

2. ΠS,≺
n for the corresponding planning as satisfiability encoding with

bound n.

Of course, the planning as satisfiability pattern ≺-encoding ΠS,≺ is correct
and complete.

Theorem 2.10. Let Π be a numeric planning problem. Let ≺ be a simple and
complete pattern. The planning as satisfiability pattern ≺-encoding ΠS,≺ is
correct and complete.

Proof. If ΠS,≺ is either incorrect or incomplete, Theorem 2.3 does not hold
for any problem Π.

2.3 Relation to Planning as Satisfiability Encodings 49

Comparing the planning as satisfiability pattern ≺-encoding ΠS,≺ with the
rolled-up ΠR and the ΠR2∃,≺ encoding, ΠS,≺ allows in a single state transition

1. the multiple consecutive execution of the same action as in the ΠR

encoding, and

2. the combination of multiple even contradictory effects on a same vari-
able by different actions, as in the R2∃ encoding.

Because of this, ΠS,≺ dominates both ΠR and ΠR2∃,≺, and the latter two
dominate the standard encoding ΠS. Given two planning as satisfiability
encoding E1 and E2 we say that E1 dominates E2 if, for each bound n, ΠE2

n

satisfiability implies that also ΠE1
n is satisfiable. Thus, if E1 dominates E2,

assuming the correctness of the two encodings and that a plan will be searched
by incrementally increasing the bound starting from 0, E1 will find a plan
with a lower bound than E2.

Theorem 2.11. Let Π be a numeric planning problem. Let ≺ be a simple and
complete pattern. The planning as satisfiability SPP ≺-encoding ΠS,≺ dominates
the rolled-up encoding ΠR and the R2∃ ≺-encoding ΠR2∃,≺. Both ΠR and ΠR2∃,≺

dominate the standard encoding ΠS.

Proof. We prove the various statements one by one. Since ≺ is simple and
complete, we can write A instead of A≺.

ΠS,≺ dominates ΠR. We have to prove that, for any bound n, if ΠR
n is

satisfiable then also ΠS,≺
n is satisfiable, which follows from the fact that any

model µ of T R(X ,A,X ′) is also a model of T ≺(X ,A,X ′). Let µ be a model
of T R(X ,A,X ′) and α be the sequence of actions corresponding to the model
µ. Clearly, α is a valid plan for the planning problem Πµ = ⟨VB, VN , A, Iµ, Gµ⟩
in which Iµ is the restriction of µ to VB ∪ VN and Gµ =

∧
v∈VB :µ(v′)=⊤ v ∧∧

v∈VB :µ(v′)=⊥ ¬v ∧
∧
v∈VN v = µ(v′), i.e., the planning problem in which the

initial state and the goal formula corresponds to the values assigned by µ to
the variables in X = VB ∪ VN and X ′. From the completeness of the pattern
encoding, the pattern α-encoding of Πµ is satisfiable. Then, also the SPP

≺-encoding of Πµ is satisfiable since:

1. any two actions in α do not mutually interfere, and thus we can reorder
the actions in α as to respect the ordering in ≺ (Theorem 2.7), and

50 SPP in Classical and Numeric Planning

2. for each action a ̸∈ α, µ(a) = 0.

ΠS,≺ dominates ΠR2∃,≺. As in the previous case, we prove that any model
µ of T R2∃,≺(X ,A,X ′) is also a model of T ≺(X ,A,X ′). Let µ be a model of
T R2∃,≺(X ,A,X ′) and α be the sequence of actions corresponding to the model
µ. The sequence α is a subsequence of ≺ and thus, by the completeness of
the SPP ≺-encoding, is also a model of T ≺(X ,A,X ′).

ΠR dominates ΠS. The fact that ΠR dominates ΠS follows from the
monotonicity of first order logic: the formulas in ΠS are a subset of the
formulas in ΠR, and thus if ΠS is satisfiable, so ΠR is.

ΠR2∃,≺ dominates ΠS. For simplicity, we assume action variables in
T S(X ,A,X ′) are Boolean, i.e., that a = 0 corresponds to ¬a and a = 1 to a.
Let µ be a model of T S(X ,A,X ′). Because of the effect and mutex axioms
in ΠS, for each variable v and action a such that µ(a) = 1, v := e ∈ eff(a),
µ(v′) = µ(e), and we can extend µ to be a model of T R2∃,≺(X ,A,X ′) by
assigning µ(va) = µ(e).

In the example below, we show that for any two distinct encodings in
{ΠS,ΠR,ΠR2∃,≺,ΠS,≺}, the only dominance relations that hold are the ones
established in the theorem.

Example 2.8. The rolled-up (resp. standard) encoding of the two robots problem
admits a model with bound nR = 5 (resp. nS = 2XI +Q+ 2, and thus nS = nR

only when XI = Q = 1). Assuming that in ≺ actions are ordered as in the
plan in Eq. 2.2, ΠS,≺

n is satisfiable when n = nS,≺ = 1 < nR, while ΠR2∃,≺
n is

satisfiable when n = nR2∃,≺ = 2(XI − 1) + Q, and thus nR2∃,≺ = nS,≺ if and
only if XI = Q = 1, and nR2∃,≺ ≤ nR if and only if 2(XI −1)+Q ≤ 5. If actions
in ≺ are not ordered as in the plan in Eq. 2.2, the bound needed by ΠS,≺ and
ΠR2∃,≺ increase. In the worst case, ΠS,≺ (resp. ΠR2∃,≺) admits a solution with a
bound equal to the one needed by ΠR (resp. ΠS), and this happens when actions
in ≺ are in reverse order wrt the plan in Eq. 2.2.

2.4 Implementation and Experimental Analysis 51

Solved (out of 20) Time (s) SMT calls
Domain PE PA PminR PmedR PmaxR PE PA PminR PmedR PmaxR PE PA PminR PmedR PmaxR

BLGRP (S) 20 20 20 20 20 1.8 1.6 1.6 1.7 1.8 1.0 1.0 1.0 1.0 1.0
CNT (S) 20 20 20 20 20 0.9 0.9 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0
CNT (L) 20 20 20 20 17 1.1 0.9 11.2 34.4 105.2 1.0 1.0 1.9 1.9 1.9
DEL (S) 5 3 6 6 4 226.4 256.0 208.3 212.9 236.0 1.7 3.3 2.3 2.3 3.0
DRN (S) 3 3 5 3 3 255.3 255.2 246.5 255.2 255.4 5.7 5.7 4.3 5.0 5.3
EXP (S) 2 2 3 3 2 270.2 273.9 257.9 261.0 275.9 3.0 6.0 5.0 5.5 7.5
FARM (S) 20 20 20 20 20 2.4 2.8 0.9 2.1 7.3 1.0 1.0 1.0 1.1 1.1
FARM (L) 20 20 20 20 19 2.7 2.7 1.1 2.9 27.4 1.0 1.0 1.1 1.1 1.4
HPWR (S) 20 20 1 - - 9.4 22.9 295.2 - - 1.0 1.0 7.0 - -
MPRIME (S) 12 10 11 9 8 137.7 166.2 165.2 185.1 207.8 1.1 2.0 2.0 2.6 3.1
PATHM (S) 18 19 13 12 6 42.3 37.2 117.9 147.7 232.7 1.0 1.0 2.8 3.7 3.8
PLWAT (S) 6 6 7 6 6 215.3 217.8 198.0 212.8 214.4 7.6 7.6 6.8 7.8 8.8
RVR (S) 15 11 16 16 11 101.4 149.4 96.7 124.9 166.7 1.7 2.4 2.8 3.0 3.9
SAIL (S) 20 20 20 20 20 3.6 1.1 0.9 1.2 24.4 3.3 3.3 2.3 2.8 3.0
SAIL (L) 19 20 20 20 19 16.3 8.2 0.9 1.0 16.2 1.5 1.5 1.2 1.6 1.8
SGR (S) 20 20 20 20 20 10.3 14.6 6.2 14.4 28.8 2.5 3.1 2.8 3.3 3.5
TPP (L) 2 2 3 3 2 270.2 270.2 259.3 260.4 270.6 2.5 2.5 2.5 2.5 3.5
ZENO (S) 11 11 11 11 11 136.4 136.4 137.7 138.8 140.7 1.6 1.6 2.7 3.0 3.5
LINE (L) 20 20 20 20 19 1.2 8.3 2.1 3.4 50.4 2.8 4.7 4.4 5.0 5.7
Best 273 267 256 249 227 83 79 133 2 0 248 188 156 115 92

Table 2.1 Comparative analysis between PATTYA, PATTYE and PATTYR.
PATTYmin

R , PATTYmed
R , and PATTYmax

R results indicate the performance that can
be expected in the best, median, and worst case, when using a randomly
generated pattern. Each domain is labelled with S (for simple) if every nu-
meric effect of each action either increases or decreases by a constant the
assigned variable, and with L (for linear), otherwise. In the table, names have
been abbreviated to save space. See Taitler et al. [2024] for more details. A
“-” indicates that no problem in the domain has been solved with the given
resources. Best results are in bold

2.4 Implementation and Experimental Analysis

In this section, we first experimentally analyse the performance of the basic
procedure in Algorithm 2.1 when

1. exploiting the pattern selection procedure of the ARPG enhanced with
the results presented in subsection 2.2.3 (subsection 2.4.1), and

2. implementing the strategies presented in subsection 2.2.4 to return
higher quality plans (subsection 2.4.2).

We end the section with a comparative analysis with all the publicly avail-
able state-of-the-art symbolic (subsection 2.4.3) and search-based numeric
planners (subsection 2.4.4).

For the experiments, we considered all the domains and problems of the
2023 Numeric International Planning Competition (IPC) [Taitler et al., 2024].

52 SPP in Classical and Numeric Planning

We also considered the LINEEXCHANGE domain, which generalizes the domain
in the example by having N = 4 robots on a line which can exchange items
while staying in their adjacent segments of length D = 2. In particular, in the
initial state, the first robot has Q ∈ N items and the goal is to transfer all the
items to the last robot in the line.

We then considered the same settings used in the Agile Track of the IPC,
and thus with a time limit of 5 minutes. Analyses have been run on an
Intel Xeon Platinum 8000 3.1GHz with 8 GB of RAM. We performed some
experiments with a time-limit of 30 minutes and obtained the same qualitative
results. All the symbolic planners have been run using Z3 v4.12.2 [de Moura
and Bjørner, 2008] for checking the satisfiability of the formula in Eq. 1.2,
represented as a set of assertions in the SMTLIB format [Barrett et al., 2016].
In the tables, we show the results only for those domains for which at least
one planner was able to solve a problem with the given resources.

All our systems have been implemented as part of the PATTY system, and
are publicly available at https://github.com/matteocarde/patty, together with
the LINEEXCHANGE domain and the problems used in this chapter.

2.4.1 Impact of the Computing Pattern Procedure

Consider a numeric planning problem Π. As already discussed in the previous
sections, how the pattern is selected can have a dramatic impact on the
number n of iterations in the SPP procedure needed to find a plan, thus on
the number of calls to the SMT, and ultimately on performance. Assuming the
existence of a plan of length n, the SPP procedure in Algorithm 2.1 needs from
1 to n iterations before finding it, how many depending on the characteristics
of the planning problem and of the selected pattern.

We saw previously how the pattern can be selected by exploiting the
ARPG construction informally presented in subsection 2.2.3. Here we extend
the system PATTYA implementing such a strategy, by ensuring that action
a1 precedes action a2 in the pattern when both are at the same ARPG level,
and either a2 blocks a1, or a1 supports a2 without a2 interfering with the
executability of a1. We refer to the resulting system as PATTYE. Additionally,
in both PATTYA and PATTYE, if we do not have an ordering relation between

https://github.com/matteocarde/patty

2.4 Implementation and Experimental Analysis 53

two actions a1 and a2, they are lexicographically ordered in the respective
patterns.

Finally, for each problem, we evaluated five different versions of PATTY,
each using a different randomly generated pattern. To summarize PATTY’s
performance across all problems and domains with these random patterns,
we followed these steps:

1. for each problem, we sorted the five obtained results by solving time,
and

2. selected the first, third, and fifth results to represent the performance
of the three virtual planners PATTYmin

R , PATTYmed
R , and PATTYmax

R , respec-
tively. PATTYmin

R , PATTYmed
R , and PATTYmax

R results indicate the perfor-
mance that can be expected in the best, median, and worst case, when
using a randomly generated pattern.

Table 2.1 summarizes the results. In the sub-tables/columns, we show:

1. the name of the domain (sub-table Domain);

2. the number of problems solved (sub-table Solved);

3. the average time needed to find a solution, counting the time limit when
the solution could not be found (sub-table Time),

4. the average number of calls to the SMT solver needed to find a solution,
computed considering only the problems solved by all the planners able
to solve at least one problem in the domain (sub-table SMT calls), and

5. on how many of the 380 problems, a system obtained the best result
(last row Best).

Considering the SPP procedure in Algorithm 2.1, we remind that the number
of SMT calls is equal to both the number n of iterations and the number of
times the initially computed pattern ≺I needs to be concatenated to find a
valid plan.

As it can be seen, the results align with the theoretical finding that PATTYE

dominates PATTYA, as the latter never exhibits a lower number of calls to the
SMT solver than the former. Further, the enhanced pattern computation of

54 SPP in Classical and Numeric Planning

PATTYE produces some effects on 6 out of 12 domains whose problems re-
quired more than one call to the SMT solver. Still, although PATTYE dominates
PATTYA, the latter solves more problems in two domains (balanced by PATTYE

’s superior results in three other domains). Indeed, for a problem in each
of these two domains, the SMT solver manages to find a solution on PATTYA

encoding while it fails on PATTYE encoding.

Considering also the performance of PATTYmin
R , PATTYmed

R and PATTYmax
R the

following observations are in order:

1. on some domains (like BLGRP (S) and CNT (S)) the pattern selection
does not have an impact: all the problems in these domains are solved by
concatenating the pattern just once, even when the pattern is randomly
generated,

2. on some other domains (significantly, HPWR (S)) the pattern selec-
tion does have an impact, the ARPG based pattern construction is very
productive, while the random generation of patterns is not,

3. yet on some other domains (and in particular, DRN (S)) the random
generation of pattern seems to be better: indeed, these problems, on
average, require more than 5 iterations to be solved, and exploiting
a different pattern (even a randomly generated one), likely from the
second iteration on, leads to a lower number of calls to the SMT solver
(though not necessarily to best performance).

Overall, the pattern computation procedure exploited by PATTYI causes an in-
crement in the number of solved problems of the 7%/10%/20% wrt PATTYmin

R /
PATTYmed

R / PATTYmax
R . Not surprisingly, PATTYmin

R has the best performance on
most problems: indeed, PATTYmin

R has by construction the best results on each
problem out of 5 runs, even if with a randomly generated pattern.

2.4.2 Quality of the Computed Plan

As discussed in subsection 2.2.4, it is indeed possible for the returned plan to
contain redundant actions. To assess the extent of this issue, we will compare
PATTYE with:

2.4 Implementation and Experimental Analysis 55

Solved (out of 20) Time (s) Plan length
Domain PE PM PI PE PM PI PE PM PI

BLGRP (S) 20 20 20 1.8 32.1 2.4 602 216 266
CNT (S) 20 19 20 0.9 34.4 1.3 533 352 408
CNT (L) 20 11 14 1.0 144.6 140.1 52 26 31
DEL (S) 5 3 5 226.4 255.4 227.2 19 16 17
DRN (S) 3 3 3 255.3 256.5 255.3 25 12 12
EXP (S) 2 3 2 270.2 255.7 270.2 38 28 28
FARM (S) 20 12 19 2.4 154.8 49.5 740 275 339
FARM (L) 20 4 15 2.7 265.0 108.0 412 16 178
HPWR (S) 20 4 18 9.4 269.8 54.5 56 32 38
MPRIME (S) 12 8 11 137.7 194.5 144.1 52 7 8
PATHM (S) 18 6 6 42.3 237.8 215.5 684 124 166
PLWAT (S) 6 4 6 223.3 257.4 217.4 301 151 196
RVR (S) 15 7 15 101.4 197.2 95.6 58 14 15
SAIL (S) 20 8 15 3.6 208.0 135.2 932 435 760
SAIL (L) 19 8 19 16.2 225.6 44.5 343 63 201
SGR (S) 20 10 20 10.3 177.0 9.9 44 20 25
TPP (L) 2 2 2 270.2 272.3 270.2 13 8 10
ZENO (S) 11 10 11 136.4 155.3 136.6 22 15 18
LINE (L) 20 20 20 1.2 6.1 1.7 383 315 315
Best 273 162 241 233 16 29 41 162 141

Table 2.2 Comparative analysis between PATTYE, PATTYM and PATTYI. Each
domain is labeled with S (for simple) if every numeric effect of each action
either increases or decreases by a constant the assigned variable, and with
L (for linear), otherwise. In the table, names have been abbreviated to save
space. See Taitler et al. [2024] for more details. Best results are in bold.

1. PATTYM, i.e., PATTYE where the solver is instructed to return a solution
that minimizes

∑k
i=1 ai,

2. PATTYI, i.e., PATTYE where the first computed model µ is used to find an
improved model that minimizes

∑k
i=1 ai while also satisfying ∧ki=1ai ≤

µ(ai).

PATTYM and PATTYI are thus guaranteed to return a ≺-optimal and π-optimal
model, respectively, as discussed in subsection 2.2.4. The results are in Table
2.2.

The table shows the number of solved problems, time, and average length
of the returned plan (sub-table Plan length), the latter computed considering
only the problems solved by all the considered planners. Regarding the

56 SPP in Classical and Numeric Planning

Solved (out of 20) Time (s) SMT calls Plan length Variables Assertions
Domain PE R2∃ OMT SR PE R2∃ OMT SR PE R2∃ OMT SR PE R2∃ OMT SR PE R2∃ OMT SR PE R2∃ OMT SR
BLGRP (S) 20 17 2 20 1.8 83.4 270.2 1.6 1.0 6.0 8.5 1.0 124 22 60 74 40 1.4k 265 40 101 1.7k 776 122
CNT (S) 20 11 18 20 0.9 169.2 92.7 0.9 1.0 13.3 13.3 1.0 164 125 163 112 45 7.6k 619 45 114 8.9k 1.8k 137
CNT (L) 20 4 3 6 1.0 240.3 255.3 227.6 1.0 1.7 5.3 2.7 10 8 5 7 26 208 122 60 58 276 1.5k 297
DEL (S) 5 1 1 - 226.4 285.7 295.6 - 1.0 2.0 10.0 - 10 10 10 - 250 15k 1.9k - 662 16k 246k -
DRN (S) 3 3 3 3 255.3 259.0 256.3 256.3 5.7 8.3 12.3 9.7 25 14 12 15 142 1.3k 299 232 344 1.6k 5.1k 2.4k
EXP (S) 2 - 2 - 270.2 - 276.2 - 3.0 - 16.0 - 38 - 28 - 254 - 1.1k - 612 - 35k -
FARM (S) 20 - - 20 2.4 - - 1.3 1.0 - - 2.2 786 - - 334 63 - - 134 120 - - 1.3k
FARM (L) 20 2 1 - 2.7 270.2 286.2 - 1.0 8.0 12.0 - 145 14 19 - 19 338 112 - 32 460 545 -
HPWR (S) 20 - - - 9.4 - - - 1.0 - - - 93 - - - 444 - - - 788 - - -
MPRIME (S) 12 5 6 10 137.7 233.2 229.6 174.2 1.2 2.2 4.2 5.2 54 7 8 34 364 36k 1.1k 1.4k 918 37k 86k 59k
PATHM (S) 18 1 3 1 42.3 286.1 262.4 286.0 1.0 6.0 9.0 3.0 57 12 28 57 186 19k 986 416 318 20k 5.2k 1.4k
PLWAT (S) 6 - - - 223.3 - - - 8.2 - - - 342 - - - 476 - - - 1.3k - - -
RVR (S) 15 8 7 11 101.4 202.6 232.6 181.8 1.4 2.0 7.7 7.7 70 16 17 19 481 39k 1.5k 2.0k 1.1k 40k 151k 79k
SAIL (S) 20 - - 20 3.6 - - 5.5 3.3 - - 7.3 6.1k - - 1.2k 135 - - 286 266 - - 2.1k
SAIL (L) 19 - 1 - 16.2 - 285.8 - 1.0 - 13.0 - 161 - 59 - 84 - 874 - 200 - 5.8k -
SGR (S) 20 1 18 - 10.3 288.2 113.7 - 2.0 2.0 5.0 - 32 29 18 - 814 55k 1.7k - 2.0k 56k 92k -
TPP (L) 2 2 - - 270.2 271.9 - - 2.5 2.5 - - 13 10 - - 237 2.6k - - 604 3.0k - -
ZENO (S) 11 9 7 - 136.4 174.6 209.6 - 1.6 1.6 5.3 - 17 16 13 - 241 7.0k 931 - 700 7.4k 74k -
LINE (L) 20 - - 5 1.2 - - 262.4 3.0 - - 26.0 110 - - 158 161 - - 1.1k 381 - - 4.2k
Best 273 64 72 116 229 0 5 39 273 17 0 43 138 43 36 63 273 0 0 43 273 0 0 0

Table 2.3 Comparative analysis between PATTYE and other symbolic planners.
In the table, names have been abbreviated to save space. See Taitler et al.
[2024] for more details. A “-” indicates that no problem in the domain has
been solved with the given resources. Best results are in bold.

previous Table 2.1, we do not show the number of calls to the SMT solver
since PATTYE, PATTYM and PATTYI use the same pattern.

As it can be seen from the table, for every domain

1. the average length of the computed plan is smallest for PATTYM and
highest for PATTYE,

2. Vice versa, the average number of solved problems is highest for PATTYE

and lowest for PATTYM for all domains except for Exp (S), where PATTYM

is able to not only solve one more problem than the others, but also
prove its optimality,

3. the difference between the time needed by PATTYE vs PATTYI varies
between being (almost) null (for DRN (S)) and very significant (e.g.,
CNT (L)). Occasionally, a shorter time for PATTYI or PATTYM is reported,
which can be attributed to the varying performance of the SMT solver,
even when executed on the same instance.

Depending on the domain, the reduction in the length of the returned plan
varies between being marginal (see, e.g., DEL (S)) and very significant (see,
e.g., SAIL (L)).

2.4 Implementation and Experimental Analysis 57

Solved (out of 20) Time (s) Plan Length
Domain PE EN NFD FF PE EN NFD FF PE EN NFD FF
BLGRP (S) 20 16 - 2 1.8 81.5 - 270.2 124 22 - 24
CNT (S) 20 12 11 15 0.9 133.8 149.8 95.7 164 106 110 107
CNT (L) 20 10 6 8 1.0 170.9 214.0 180.0 30 29 16 13
DEL (S) 5 13 9 18 226.4 121.7 165.2 41.2 25 31 35 25
DRN (S) 3 16 16 2 255.3 62.9 66.0 268.4 16 8 7 7
EXP (S) 2 6 3 - 270.2 212.3 253.7 - 36 72 54 -
FARM (S) 20 20 15 9 2.4 0.9 85.3 188.1 701 292 292 341
FARM (L) 20 18 11 15 2.7 48.6 151.2 80.5 864 34 21 34
HPWR (S) 20 2 1 1 9.4 270.3 285.1 285.0 64 20 35 16
MPRIME (S) 12 17 14 17 137.7 68.1 127.2 45.1 63 9 7 8
PATHM (S) 18 2 1 10 42.3 272.2 284.2 154.9 57 18 12 14
PLWAT (S) 6 16 14 3 223.3 101.3 167.2 268.3 285 429 393 455
RVR (S) 15 8 4 10 101.4 197.4 240.8 133.3 34 33 9 9
SAIL (S) 20 20 10 1 3.6 2.0 150.3 285.0 174 174 174 179
SAIL (L) 19 2 15 8 16.2 270.6 96.8 182.8 177 81 174 66
SGR (S) 20 8 4 13 10.3 182.5 245.7 122.5 * * * *
TPP (L) 2 3 2 2 270.2 255.2 270.0 266.7 13 11 5 9
ZENO (S) 11 19 9 11 136.4 28.1 172.5 135.0 20 14 21 14
LINE (L) 20 9 6 6 1.2 175.4 235.0 211.6 211 276 234 187
Best 273 217 151 151 150 49 38 93 90 109 94 100

Table 2.4 Comparative analysis between PATTYE and other publicly available
search-based planners. In the table, names have been abbreviated to save
space. A “-” indicates that no problem in the domain has been solved with the
given resources. The “*” in the SUGAR domain, indicates that there was not a
single problem solved by all the considered planners. Best results are in bold.

2.4.3 Comparative Analysis with SOTA Symbolic Planners

We compared our planner PATTYE with the three planning as satisfiability
planners SPRINGROLL (based on the rolled-up ΠR encoding [Scala et al.,
2016d]), the version R2∃ of PATTY computing the planning as satisfiability
R2∃ ≺-encoding ΠR2∃,≺; and OMTPLAN (based on the ΠS standard encoding).
OMTPLAN is one of the two planners that competed in the last IPC, ranking
second. We remind that for the symbolic planners, the number n of calls to
the SMT solver is equal

1. to the number of times the initial pattern ≺I needs to be concatenated
to find a plan with our planners, and

2. to the bound needed by the considered planning as satisfiability planners
to find a plan.

Table 2.3 presents the results for PATTYE and all the above-mentioned
symbolic planners. The meaning of the labels in the sub-tables is as before.

58 SPP in Classical and Numeric Planning

From the table, two main observations are in order. First, PATTYE always
find a solution with a number of calls to the SMT solver which is never
higher than the ones needed by the other considered symbolic planners (as
theoretically established by Theorem 2.11). Consequently, PATTYE produce
formulas with (far) fewer variables (in sub-table Variables) and assertions (in
sub-table Assertions) than R2∃, OMTPLAN and SPRINGROLL when the plan is
found. The lower number of variables and assertions of PATTYE is also due to
the particular encoding in which no variables representing the intermediate
states are used. Interestingly, on some domains PATTYE good results are due
to its action rolling ability (see, e.g, BLGRIP (S), CNT (S)) and in some other
domains are due to its ability to allow for sequences of mutually interfering
actions (see, e.g, SGR (S), TPP (L), ZENO (S)).

Second, PATTYE outperforms all the other planners in almost every domain:
PATTYE has always solves more problem and on only two domains it exhibits
a longer average solving time.

Interestingly, on at least 50% of the problems that the other planners
solve, they can return a shorter plan than PATTYE. However, as discussed in
subsection 2.2.4, if rolling is not allowed (as it is for R2∃ and OMTPLAN),
the set of models of the respective encoding is surely finite while this is not
necessarily the case for PATTYE, and, when this happens, PATTYE may return
an arbitrarily long plan. Similarly, as the example in subsection 2.2.4 shows,
our encoding can have infinitely many models while SPRINGROLL may not,
given that the latter does not allow to execute mutually conflicting actions at
the same step.

2.4.4 Comparative Analysis with SOTA Search-Based Plan-

ners

We compared our planner PATTYE with the three search-based planners
ENHSP [Scala et al., 2016b], METRICFF [Hoffmann, 2003] and NUMER-
ICFASTDOWNWARD (NFD) [Kuroiwa et al., 2022]. NFD competed in the last
IPC, ranking first.

The results are reported in Table 2.4. Here, beside the number of solved
problems and time, we just report the average length of the computed plan,

2.5 Conclusions and Future work 59

as usual computed considering the problems solved by all the planners able
to solve at least one problem in the domain.

Considering the sub-tables with the performance data, PATTYE solves
the most problems in 12 domains, followed by ENHSP in 7 domains. For
average plan length, PATTYE generates shorter plans than the other systems
in 4 domains, while ENHSP, NFD, and FF lead in 5, 8, and 8 domains,
respectively.

2.4.5 Overall Comparative Analysis

The cactus plot in Figure 2.1 summarizes the performance of all the systems
we presented. The graph plots how many problems can be solved in a given
time. As it can be seen, all the different versions of PATTY but PATTYM, have
better performance than the other systems. We remind that PATTYI and
PATTYM are guaranteed to return a non-redundant plan, and that PATTYM

plan is also guaranteed to have the minimal number of actions among the
plans corresponding to Π≺ models. The positive results achieved even when
considering PATTYmax

R –representing PATTY’s lowest performance across 5 runs
per problem with a randomly generated pattern– demonstrate the robust
effectiveness of the SPP approach.

Overall, of the 380 problems we considered, PATTYE successfully solved
273, while ENHSP and SPRINGROLL solved 221 and 116, respectively. ENHSP
and SPRINGROLL were the top performers among the search-based and sym-
bolic planners, respectively.

2.5 Conclusions and Future work

We proposed Symbolic Pattern Planning (SPP), a novel approach for solving
automated planning problems in deterministic domains. A pattern is a se-
quence of actions, each of which can be executed for 0 or more times. The
core idea of SPP is to encode as a formula the state that results from executing
the actions in the pattern zero or more times, and then impose the conditions
of the initial and goal states. Assuming the correctness of the encoding, by

60 SPP in Classical and Numeric Planning

0 50 100 150 200 250
Solved Instances

0

100

200

300

P
la

nn
in

g
T

im
e

[s
]

PE

PA

PminR

PmedR

PI

PmaxR

EN

PM

FF

NFD

SR

OMT

R2∃

Fig. 2.1 Number of problems solved (x-axis) in a given time (y-axis),
by all the presented systems. PE stands for PATTYE, and similarly
for PA/PminR /PmedR /PmaxR /PI/PM. The different versions of PATTY are rep-
resented with solid lines. EN/FF/NFD/SR/OMT/R2∃ stand for the
ENHSP/FF/NFD/SPRINGROLL/OMTPLAN/R2∃ planners and are represented
with dashed lines. In the legend, the planners are listed in reverse order of
when their curve intersects the timeout line.

iteratively extending the pattern by adding a complete sequence of actions,
we obtain a correct and complete procedure for planning.

On the theoretical side, we proved that when SPP is cast in the planning
as satisfiability framework, our encoding generalizes both the R2∃ encoding
by allowing for action rolling (as in the R encoding), and the rolled-up R

encoding by allowing for actions with interfering preconditions and effects (as
in the R2∃ encoding). This generalization leads the pattern encoding to often
find plans with a lower bound n on the length of the planning as satisfiability
encoding.

Experimentally, we considered the basic SPP procedure in which an initial
simple and complete pattern is computed at the beginning and then iteratively
used to extend the current pattern until a valid plan is found. We considered
the benchmarks in the last IPC, numeric track and showed that the resulting
planner PATTY outperforms all the currently available planners, both symbolic
and search-based.

2.5 Conclusions and Future work 61

2.5.1 Considerations on Classical Planning

As stated in the preliminary section, a classical planning task can be considered
as a numeric planning task Π = ⟨VB, VN , A, I, G⟩ with VN = ∅. Thus, our
approach can also handle classical planning problems. Classical planning – as
the word classical suggests – was the first planning flavour to be introduced in
1971 and was the first one in which planners competed back in the original
IPC of ’98 [McDermott, 2000]. Being also the most simple one, in the last
26 years, the competition has evolved and nowadays classical IPCs present
domains which are no longer to be considered classical planning problems,
but lifted classical planning problems.

In our formulation, we assumed that a planning task to be a tuple Π =

⟨VB, VN , A, I, G⟩ where VB and VN are sets of variables. This representation
is called grounded. A lifted representation instead makes use of objects,
predicate symbols and action symbols [Lauer et al., 2021]. Let’s make an
example of two trucks T = {t1, t2} and three places P = {p1, p2, p3}. The
objects are the trucks and places. A predicate symbol can be, for example,
at(t, p), signalling that a generic truck t is at a position p. An action symbol
can be, for example, move(t, a, b), representing the action of a generic truck t
moving from a generic place a to a generic place b. The predicate symbols
and actions symbols are then grounded on the objects, meaning that at(t, p)
becomes the ground variables {at(t, p) | (t, p) ∈ T × P} and move(t, a, b)

becomes the ground actions {move(t, a, b) | (t, a, b) ∈ T × P × P}. It is
clear that a lifted representation is much more compact than a ground one.
A grounder is a function G that takes as input a lifted representation and
outputs a ground representation.

In the last 2023 IPC competition [Taitler et al., 2024], in the classical
track, out of the 7 domains which were presented, all of them had compact
lifted representation but which results in huge ground representation when
grounded. On these domains, we tried the state-of-the-art grounders of
ENHSP [Scala and Vallati, 2021] and of the Unified Planning’s Grounder7

and could not ground even the most basic problems in under 10 minutes.
It is no surprise then that the podium of the classical track of the 2023 IPC

saw as winners only lifted planners – i.e., planners able to directly deal with

7https://github.com/aiplan4eu/unified-planning

https://github.com/aiplan4eu/unified-planning

62 SPP in Classical and Numeric Planning

the lifted representation. These solvers are RAGNAROK [Drexler, 2023] and
LEVITRON [Corrêa et al., 2023], together with SCORPION [Corrêa et al., 2023]
which implemented a very advanced grounder based on GRINGO [Gebser
et al., 2011], a grounder for Answer Set Programming [Gelfond and Lifschitz,
1991], which can actually perform some partial solving to better ground the
planning task.

For this reason, our solver PATTY could not compete with any of these
planners on these domains, since the ground representation is too huge to
be able to be encoded into a SMT encoding. In the future, we thus plan to
employ some techniques based on planning with first-order logic (see, e.g.,
[Höller and Behnke, 2022]) to instrument PATTY to be a lifted planner, able to
directly deal with the lifted representation of a planning task.

Chapter 3

SPP in Classical Planning with
Conditional Effects

As stated in Chapter 1, in classical planning, the environment in which agents
operate is represented only through Boolean variables. In this fragment,
actions are idempotent, i.e., applying the same action once or multiple times
result in the same state. The idempotence property falls if we consider
classical planning with conditional effects (CEs), i.e., effects of actions which
are applied only if some conditions hold. Dealing with CEs has already been
extensively studied in the literature and two main approaches exist: either (i)
one deals with CEs in a “native” way, i.e., by encapsulating the logic of CEs
directly in the procedure searching for a plan [Rintanen, 2011; Röger et al.,
2014; Katz, 2019], or (ii) one compiles each action with CEs into multiple
actions without CEs [Gazen and Knoblock, 1997; Nebel, 2000; Gerevini et al.,
2024]. Both approaches have their pros and cons, the first requires a more
tailored approach and a specialized solver, since many heuristics (see, e.g.,
Bonet and Geffner [2001]) cannot directly deal with CEs but it is, in general,
faster, while the latter allows the planning task to be solved by any classical
planner, but the compilation either causes and exponential blow-up of the
number of actions [Gazen and Knoblock, 1997] or a polynomial increase in
the length of the plan [Nebel, 2000; Gerevini et al., 2024] (as seen in Chapter
1).

64 SPP in Classical Planning with Conditional Effects

As shown above, dealing with one application of an action with CEs has
been extensively studied. However, the consecutive repeated execution of
the same action with CEs (i.e., rolling), has never been previously explored.
Rolling has been introduced in [Scala et al., 2016d] for numeric planning,
where the lack of idempotence is intrinsic. The numeric planner SPRINGROLL

in [Scala et al., 2016d] and this thesis’ numeric planner PATTY, employ
shortcuts when dealing with rolling of actions with numeric effects (e.g.,
increasing a variable by 5 for 10 times is equivalent of increasing it by 50 only
one time) thus avoiding explicitly considering the multiple repetition of the
same action, and speeding the planning process.

A deep connection between classical planning with CEs and (bounded)
numeric planning has been theoretically shown by Gigante and Scala [2023]
and recapped in Chapter 1, showing that any bounded numeric planning
problem can be translated into a classical planning problem with CEs, and
vice versa. For this reason, in this chapter, we ask ourselves if rolling can
be exploited directly in classical planning with CEs, to speed up planning1.
Firstly, we substantiate our claim that rolling actions with CEs is a complex
and interesting problem by itself: recalling that deciding the existence of a
plan for a classical planning task with (resp. without) CEs is PSPACE-complete
[Bylander, 1994] (resp. [Nebel, 2000]), in this chapter we show that the
problem remains PSPACE-complete even when we consider finding a planning
task with only one action with CEs, i.e., deciding how many times the action
is consecutively executed is a difficult problem on its own. Secondly, we show
an SPP approach, able to deal with multiple execution of the same action with
CEs in a single step. In fact, in all the PaS approaches in the literature dealing
with CEs (see, e.g., Rintanen [2011]), applying an action k consecutive times
requires a bound n ≥ k, i.e., a step for each application of the action. In
our approach, instead, we aim to make the bound n independent of k, or at
least orders of magnitude lower. Given a non-idempotent action a, to exploit
the rolling of a in a PaS setting, we first compute the transition relation of
a, denoted with Ta, i.e., a logic formula implicitly representing all the states
reachable after one application of a, and then we perform the computation

1In numeric planning, rolling can be beneficial only in the case where actions have linear
effects, due to the monotonicity of the applications of the effects multiple times. Instead,
Gigante and Scala’s compilation produces, in general, non-linear effects, and thus employing
rolling in the compiled planning task is not straight-forward

65

of the transitive closure of Ta (see, e.g., Matsunaga et al. [1993]) denoted
with T +

a , i.e., a logic formula implicitly representing all the possible states
reachable after all possible (finite) applications of a.

Computing the transitive closure for an idempotent action, given our
complexity results, is of course a PSPACE-complete problem on itself – other-
wise planning with a single non-idempotent action would simply amount to
computing the transitive closure and then checking whether the goal state is
reachable from the initial state. However, to compute the transitive closure,
we employ Reduced Ordered Binary Decision Diagrams (simply BDDs) [Bryant,
1985, 1992], which have been very successfully employed for this purpose
in the Model Checking community [Burch et al., 1992; Clarke et al., 1996]
due to their compact representation of propositional formulas and the ability
to rapidly perform conjunctions, disjunction, negations, and substitution on
these formulas. Even if computing the transitive closure becomes unpractical,
its computation procedure produces some intermediate formula T ma with
m ≥ 0 that models the states reachable in up to 2m repetitions of the action a.
We can thus impose a time limit on the computation of the transitive closure
and then employ the last intermediate formula T ma computed – which in the
best case will be T ma ≡ T +

a and in the worst case (i.e., m = 0) is T ma ≡ Ta – in
a SPP approach, reducing by a factor of 2m the bound required to find a valid
plan.

Finally, given a pattern ≺ – as defined in the previous chapter – and a
planning task Π we will employ an SPP encoding Π≺+, in which, the transition
relation Ta of each non-idempotent action a is substituted with the transitive
closure T +

a , and a propositional variable a+ is used to represent whether the
action a has been executed at least one time. After finding, at some bound
n, a valid solution for Π≺+n , we can then find a valid plan π for Π, where, for
each action a we employ the intermediate formulas T 1

a , . . . , T +
a found when

computing the transitive closure of Ta, and the states before and after the
application of a+ in Π≺+n to retrieve the number of times a must be repeated
in the plan π.

Throughout the chapter, we will employ a motivating example of a counter
of two numbers, expressed with binary representation, to illustrate our ap-
proach.

66 SPP in Classical Planning with Conditional Effects

3.1 Preliminaries

3.1.1 Classical Planning Task with Conditional Effects

A classical planning task with Conditional Effects (in the following, just
planning task) is a tuple Π = ⟨V,A, I,G⟩. The set V contains propositional
variables with domain {⊤,⊥}, the symbols for truth and falsity. The set V
induces the set of literals lit(V) = {v | v ∈ V } ∪ {¬v | v ∈ V }. The negation
¬l of a literal l is ¬v if l = v or v if l = ¬v. Let L ⊆ lit(V), we can thus
define L+ = {v | v ∈ L}, L− = {v | ¬v ∈ L}, and vars(L) = L+ ∪ L−. In the
following, we will always assume that any subset L ⊆ lit(V) is consistent, i.e.
L+∩L− = ∅. An action a ∈ A is a tuple ⟨pre(a), post(a)⟩ where pre(a) ⊆ lit(V)

are the preconditions of a and post(a) is a set of conditional effects of a. A
conditional effect e is a tuple ⟨cond(e), eff(e)⟩ where cond(e) ⊆ lit(V) are the
conditions which allow applying the effect eff(e) ⊆ lit(V). If v ∈ eff(e) we
say that e adds v, if ¬w ∈ eff(e) we say that e deletes w. We denote with
add(a) ⊆ V and del(a) ⊆ V the set of all variables added or deleted by the
effects of a, i.e.,

add(a) =
⋃

e∈post(a)

eff(e)+, del(a) =
⋃

e∈post(a)

eff(e)−.

Let v be a variable, we denote the set of CEs of an action a that adds v as
∆+
a (v) = {e ∈ post(a) | v ∈ eff(e)+} and that deletes v as ∆−a (v) = {e ∈

post(a) | v ∈ eff(e)−}. Let e1 and e2 be two CEs, we say that (i) e1 blocks
e2 if eff(e1)− ∩ cond(e2)

+ = ∅ or eff(e1)
+ ∩ cond(e2)

− = ∅, and (ii) e1 allows
e2 if eff(e1)

+ ∩ cond(e2)
+ ̸= ∅ or eff(e1)

− ∩ cond(e2)
− ̸= ∅. An action a is

non-idempotent if there exist two CEs e1, e2 ∈ post(a), e1 ̸= e2, such that e1
allows and doesn’t block e2. If for each e ∈ post(a), we have cond(e) = ∅,
then a is without CEs, and with CEs otherwise. If, for each a ∈ A, a is without
CEs (resp. with CEs), then also Π is.

A state is a set s ⊆ V containing the variables which are true in the state,
while all the others are assumed to be false. We denote with S = 2V the set
of all possible states. Finally, we have the initial state I ⊆ V and the goal
condition G ⊆ lit(V). We say that a state s respects a subset of literals L,

3.1 Preliminaries 67

denoted with s |= L, if L+ ⊆ s and L− ∩ s ̸= ∅. An action a is applicable in
a state s if (i) s |= pre(a), (ii) there exists at least one CE e ∈ post(a) such
that s |= cond(e), and (iii) there are no conflicting CEs, i.e., for each v ∈ V ,
e+ ∈ ∆+

a (v) and e− ∈ ∆−a (v) it does not hold that s |= cond(e+) ∪ cond(e−).
Applying an action a in a state s ∈ S results in a state s′ ∈ S, denoted as
s′ = res(s, a), such that s′ is undefined if s is undefined or a is not applicable
in s, or for each v ∈ V we have v ∈ s′ iff either (i) v ∈ s and it does not
exist a CE e ∈ ∆−a (v) such that s |= cond(e), or (ii) there is at least one
CE e ∈ ∆+

a (v) such that s |= cond(e). Applying a sequence of n actions
π = a0; . . . ; an−1 from a state s0 induces a sequence of n+1 states s0; . . . ; sn
where si+1 = res(si, ai) with i ∈ [0, n), and we say that sn = res(s0, π). A
valid plan π for a planning task Π = ⟨V,A, I,G⟩ is a sequence of actions
a0; . . . ; an−1 such that sn = res(I, π) |= G. We denote with |π| = n the length
of a plan π = a1; . . . ; an. We denote with ak, k ≥ 0 the sequence where a is
repeated k times.

Example 3.1 (COUNTERS). Let’s introduce now the motivating example of
this chapter. Let B ∈ N, and let x, y ∈ N be two counters bounded by 2B − 1

and represented as B-bits binary numbers through the propositional variables
X = {xB, . . . , x1} and Y = {yB, . . . , y1}, where xB and yB represent the most
significant bit. The numbers x and y can be increased and decreased by one unit
by changing the respective bits in X and Y accordingly. If a number reaches the
value 2B − 1, a further increase overflows it to 0 and when it reaches 0 a further
decrease underflows it to 2B − 1. The two counters can be locked, meaning that
the counters cannot change their value any longer, signalled by the variables
L = {lx, ly}. When locking, all pairs of bits xi and yi which have the same value
are marked as equal by the variable eqi in EQ = {eqB, . . . , eq1}. Starting from
a predetermined value of the bits, we need to reach a state in which all the bits
are equal, i.e. x = y. The following problem can be expressed by the planning
task Π = ⟨V,A, I,G⟩ where

V = X ∪ Y ∪ EQ ∪ L, I ⊆ X ∪ Y, G = L,

A = {inx,iny,dex,dey,lck},
inx = ⟨¬lx, {ix1, . . . ,ixB,ox}⟩,dex = ⟨¬lx, {dx1, . . . ,dxB,ux}⟩,
iny = ⟨¬ly, {iy1, . . . ,iyB,oy}⟩,dey = ⟨¬ly, {dy1, . . . ,dyB,uy}⟩,
lck = ⟨∅, {tt1,ff1, . . . ,ttB,ffB, ⟨∅, {lx, ly}⟩}⟩.

68 SPP in Classical Planning with Conditional Effects

and ixi,dxi,iyi,dyi, are CEs to increase and decrease x and y, ox,ux,oy,uy
to overflow or underflow x and y when they have reached their bound, and
tti,ffi to lock two bits when both are true (tt) or false (ff):

ixi = ⟨{¬xi, xi−1, . . . , x1}, {xi,¬xi−1, . . . ,¬x1}⟩,
ox = ⟨{xB, . . . , x1}, {¬xB, . . . ,¬x1}⟩,
dxi = ⟨{xi,¬xi−1, . . . ,¬x1}, {¬xi, xi−1, . . . , x1}⟩,
ux = ⟨{¬xB, . . . ,¬x1}, {xB, . . . , x1}⟩,
tti = ⟨{xi, yi}, {li}⟩, ffi = ⟨{¬xi,¬yi}, {li}⟩.

and accordingly for iyi, dyi, oy and uy. According to the definition, the actions
inx,iny,dex and dey are non-idempotent, while lck is idempotent. Let’s
suppose, with B bits, that initially x = 0 = 0. . .02 and y = 2B−1 = 10. . .02, and
thus I = {yB−1} and G = {lB, . . . l1}. One possible plan is

π = inx(2B−2);dey(2B−2);lck

3.1.2 Propositional Formulas and Binary Decision Diagrams

A propositional formula with n variables is a function f : {⊤,⊥}n 7→ {⊤,⊥}.
We say that two propositional formulas f1 and f2 are logically equivalent,
denoted with f1 ≡ f2, when for each possible assignment to their variables in
{⊤,⊥}n they produce the same result in {⊤,⊥}. For a propositional formula
f(x1, . . . , xn), we denote with

f(x1, . . . , xi−1, xi, xi+1, . . . , xn)|xi←⊤ = f(x1, . . . , xi−1,⊤, xi+1, . . . , xn),

f(x1, . . . , xi−1, xi, xi+1, . . . , xn)|xi←⊥ = f(x1, . . . , xi−1,⊥, xi+1, . . . , xn)

i.e., the formulas obtained by substituting xi with either ⊤ or ⊥ for i ∈ [1, n].
The existential quantification of a formula, denoted with ∃xi : f(x1, . . . , xn),
asks whether there exists at least an assignment to xi (in {⊤,⊥}) such that
f is evaluated to ⊤. The existential quantifier can be eliminated using the
smoothing operator S [McGeer, 1989; Lin et al., 1990], i.e.,

Sxif(x1, . . . , xn) = f |xi←⊤ ∨ f |xi←⊥,

3.1 Preliminaries 69

when the existential quantification is on multiple variables, e.g.,

∃x1,...,xnf(x1, . . . , xn),

the elimination consists of an iterated application of S, i.e.,

∃x1,...,xnf(x1, . . . , xn) ↔ Sx1 · · · Sxnf(x1, . . . , xn).

The iterated repetition Sx1 · · · Sxn is denoted with Sx1,...,xn.

Let f be a propositional formula with n variables x1, . . . , xn. A Binary
Decision Diagram BDD of f [Bryant, 1985, 1992] is a rooted directed acyclic
graph ⟨V,E, λ⟩ with V being the nodes of the graph, E ⊆ V × V being
the edges of the graph and λ : V 7→ {1, . . . , n,⊤,⊥} being a labelling func-
tion. A node v ∈ V can either be of two types: a terminal node, if it is
labelled with λ(v) ∈ {⊤,⊥} or non-terminal node, if λ(v) ∈ {1, . . . , n}. A non-
terminal node v can have two children node, high(v), low(v) ∈ V . Intuitively,
a non-terminal node v with λ(v) = i can be read as a propositional formula
recursively defined as

fv = (xi ∧ fhigh(v)) ∨ (¬xi ∧ flow(v)).

We say that a BDD is reduced when there are no redundant nodes, i.e., a node
v where fhigh(v) ≡ flow(v). We say that a BDD is ordered when we have a total
order < between the variables x1, . . . , xn of f such that, for each node v with
λ(v) = i, λ(high(v)) = j, and λ(low(v)) = k, we have xi < xj and xi < xk.

Figure 3.1 shows a reduced and ordered BDD for the propositional formula
f = (x1∧x2)∨ (x3∧x4)∨ (x5∧x6). As it can be seen, the structure of the BDD,
and most importantly the number of its nodes, is very sensitive to the order
given to the variables. Fig 3.1a shows a BDD of f constructed with the order
x1;x2;x3;x4;x5;x6, having |V | = 6, while Fig 3.1b shows a BDD constructed
on the same formula f but with the order x1;x3;x5;x2;x5;x6, having |V | = 14.
A reduced and ordered BDD is a canonical representation of a propositional
formula, meaning that, given two propositional formulas f1 and f2 with n

variables, the BDDs ⟨V1, E1, λ1⟩ and ⟨V2, E2, λ2⟩ constructed with the same
order of variables for f1 and for f2 are equal – i.e. V1 = V2, E1 = E2 and
λ1 = λ2 – if and only if f1 and f2 are logically equivalent. In the rest of the

70 SPP in Classical Planning with Conditional Effects

0 1

0

1 1

0

0

1

1

0

0

1

(a)

0 1

0

1

0 1

1

0

0

1

0

1

0 1

1

0

0

1

1

0 1

0

0

1

0

1

0

1

(b)

Fig. 3.1 Two BDDs representing the propositional formula (x1∧x2)∨(x3∧x4)∨
(x5 ∧ x6) with (a) having the order x1;x2;x3;x4;x5;x6 while (b) having the
order x1;x3;x5;x2;x4;x6. Dashed lines represent the edge (v, low(v)) and solid
lines the edge (v, high(v)). Nodes are labelled with the variable they represent.
Red edges denote paths from the route to a terminal node v with λ(v) = ⊤,
i.e., the models {¬x1, x2, x3,¬x4, x5, x6} and {¬x1,¬x2, x3,¬x4, x5, x6}.

chapter, we will denote Reduced Ordered Binary Decision Diagrams simply as
BDDs.

The use of BDDs makes some operations on propositional formulas very
trivial, e.g.,

1. testing equivalence between two propositional formulas amounts to
testing whether the BDDs of the two formulas are the same,

2. performing a substitution f |xi←⊤ (resp. f |xi←⊥) amounts to removing
from the BDD representation all nodes v with λ(v) = i and replacing all
edges (w, v) with (w, high(v)) (resp. (w, low(v))),

3.2 Complexity of Rolling 71

3. conjunction (∧), disjunction (∨) or negation (¬) can be performed on
the nodes iteratively, e.g., to compute f = f1∧f2, starting from the routes
v1 and v2 of f1 and f2, respectively, we can iteratively perform v1 ∧ v2 as
high(v1) ∧ high(v2) and low(v1) ∧ low(v2), stopping when encountering
a terminal node and returning a value based on the semantic of the
operator (i.e., ⊤ ∧⊥ = ⊥),

4. satisfiability, i.e., knowing if there is at least one assignment in {⊤,⊥}n
to the variables of a function f such that the function evaluates to ⊤, can
be trivial, since any unsatisfiable formula will have a BDD representation
of only a terminal node v with λ(v) = ⊥,

5. if the formula is satisfiable, finding the assignments to the variables of
f which satisfy f – i.e., the models of f –, simply amounts to finding
a path from the root to a terminal node v with λ(v) = ⊤, like the red
path in Fig. 3.1.

Constructing BDDs which compactly represents a propositional formula de-
pends heavily on the order of the variable, in the worst-case leading to an
exponential number of nodes. Finding the optimal order, i.e., the order of vari-
ables such that |V | is minimal, is a NP-complete task [Bryant, 1986]. However,
in the average case, BDDs can be compact in size, boosting and improving the
performances of real-world applications employing propositional formulas,
like in Model Checking [Burch et al., 1992].

3.2 Complexity of Rolling

In this section, we present our main novel complexity result for classical
planning with CEs. We will prove that determining the plan existence remains
PSPACE-complete even when considering a planning task with a single action
with CEs.

We recall from Chapter 1 that the problem of determining whether a valid
plan exists for a planning task Π with and without CEs is PSPACE-complete
[Bylander, 1994; Nebel, 2000].

72 SPP in Classical Planning with Conditional Effects

Theorem 3.1. Determining whether a valid plan exists for a classical planning
task with CEs Π = ⟨V, {a}, I, G⟩, where a is the only action of Π, is PSPACE-
complete.

Proof. (Membership) The problem is in PSPACE because the size of a state is
bounded by |V | and we can iteratively apply a from I until we reach sn |= G.
Since there are at most 2|V | possible states, no more than 2|V | repetitions
of a are required to reach sn. (Hardness)Let M be a Deterministic Turing
Machine (DTM) with bounded tape, i.e., M = ⟨Q,Σ,Γ, δ, q0, qa, n⟩ (see, e.g.,
Sipser [1997]). Q is the set of states, Σ the input alphabet, Γ the tape
alphabet including Σ and the symbol ⊔ for “blank”, δ is a partial function
δ : Q×Γ 7→ Q×Γ×{L,R}, the states q0, qa ∈ Q are the initial and accepting
states, respectively, n ∈ N is the bounded length of the tape. Let the input of
the DTM be y1; . . . ; ym with yi ∈ Σ and m ≤ n. We can reduce the DTM M to
the planning task Π = ⟨V, {a}, I, G⟩ such that

V = {tpi | i ∈ [0, n+ 1]} ∪ {ati,q | i ∈ [1, n], q ∈ Q}
∪ {ini,x | i ∈ [1, n], x ∈ Γ} ∪ {accept},

I = {tpi | i ∈ [1, n]} ∪ {at1,q0}
∪ {ini,yi | i ∈ [1,m]} ∪ {ini,⊔ | i ∈ (m,n]},

G = {accept}.

Where tpi is used to control the allowed cells of the tape, ati,q signals that
the DTM is in tape’s cell i and state q, and ini,x signals that cell i contains
symbol x. The only action in Π is a = ⟨∅, post(a)⟩ where, for each i ∈ [1, n]

and (q, x) ∈ Q× Γ, if δ(q, x) = (q′, x′, L) then post(a) contains

⟨{ati,q, ini,x, tpi−1}, {¬ati,q, ati−1,q′ ,¬ini,x, ini,x′}⟩,

i.e., if the DTM is in cell i and state q, reading x, and the cell on the left is
allowed, then the DTM moves left to cell i−1 and to state q′ and the symbol in
cell i is replaced with x′. Similarly, if δ(q, x) = (q′, x′, R) then post(a) contains

⟨{ati,q, ini,x, tpi+1}, {¬ati,q, ati+1,q′ ,¬ini,x, ini,x′}⟩.

3.3 Rolling Actions with Conditional Effects 73

Finally, for each i ∈ [1, n], post(a) contains

⟨{ati,qa} ∪ {¬ini,x | x ∈ Γ, q′ = σ(qa, x)}, {accept}⟩,

i.e., the DTM accepts if it is in the accepting state, and it is not reading any
symbol that would change the DTM state.

Since the CEs encode the transition δ, a valid plan can be found iff M
accepts. Since |Q| × |Γ| × n is polynomial w.r.t. the size of M , we conclude
that a DTM with polynomially bounded tape and its input can be polynomially
reduced to a planning task with only one action with CEs.

This theorem shows how rolling, i.e., the consecutive repetition of an
action, even when it is the only action in the planning task, is a difficult
problem on its own.

3.3 Rolling Actions with Conditional Effects

In this section, we show how we can exploit rolling when dealing with actions
with conditional effects. Firstly, we will describe the concept of transition
relations, i.e., logic formulas implicitly representing all the states reachable
after one application of an action. Then, we will show how it is possible
to compute the transitive closures of these transitive relations, obtaining a
logic formula implicitly representing all the possible states reachable after all
possible (finite) applications of the actions.

3.3.1 Transition Functions and Transition Relations

Let Π = ⟨V,A, I,G⟩ be a planning task and a be an action of Π. The transition
function of a is a function Ta : S × S 7→ {⊤,⊥}, with S = 2V being the set of
all possible states, such that, for each s, s′ ∈ S, we have Ta(s, s′) = ⊤ iff (i) a
is applicable in s, and (ii) s′ is the state resulting by the application of a in s,
i.e., s′ = res(s, a).

As standard for PaS encodings, we model the action’s transition function Ta
through a transition relation. A transition relation is a propositional formula

74 SPP in Classical Planning with Conditional Effects

Ta(V, V ′), where V ′ is a copy of the variables V , i.e., V ′ = {v′ | v ∈ V }. The
purpose of this formula is to implicitly represent all the states s, s′ ∈ S where
a is applicable in s, and s′ can be reached from s applying a. The variables in
V and V ′ thus model the states s and s′, respectively. For the case of classical
planning with CEs, the transition relation Ta(V, V ′) is the conjunction of the
union of the following sets of formulas

1. prea(V) which contains∧
v∈pre(a)

v ∧
∧

¬w∈pre(a)

¬w ∧
∨

e∈post(a)

c(e),

where c(e) is the formula obtained by the conjunction of all the literals
of cond(e), i.e.,

c(e) =
∧

v∈cond(e)

v ∧
∧

¬v∈cond(e)

¬v,

ensuring that the preconditions pre(a) hold in s and that there is at least
one CE in post(a) with its condition respected by s,

2. effa(V) which contains, for each v ∈ V ,

v′ ↔ (v ∧
∧

e∈∆−
a (v)

¬c(e) ∨
∨

e∈∆+
a (v)

c(e), (3.1)

ensuring s′ = res(s, a), i.e., v′ is true if v is true and no condition of a
CE deleting v (in ∆−a (v)) is respected, or at least one condition of a CE

adding v (in ∆+
a (v)) is respected,

3. conflicta(V), containing for each v ∈ V and for each e1 ∈ ∆+
a (v) and

e2 ∈ ∆−a (v)

¬(c(e1) ∧ c(e2)),

ensuring that no conflicting CEs’ conditions can be respected in s.

3.3 Rolling Actions with Conditional Effects 75

01

1

0

10

0

1

0 1

0

1

0 1

1

0

0

1

0 11 0

0 1

1

0

Fig. 3.2 BDD representation of the transition relation Tinx(V, V ′) of the COUN-
TERS example.

Example 3.2 (COUNTERS (ctd.)). In our COUNTERS example, let’s suppose
B = 3 bits, for the action inx we have

∆+
inx(x1) = {ix1}, ∆−inx(x1) = {ix2,ix3,ox},

∆+
inx(x2) = {ix2}, ∆−inx(x2) = {ix3,ox},

∆+
inx(x3) = {ix3}, ∆−inx(x1) = {ox},

and the transition relation Tinx(V, V ′) for the action inx is composed of

1. prea(V), containing

¬lx,

2. effa(V), containing

x′1 ↔
(
x1 ∧ ¬(¬x2 ∧ x1) ∧ ¬(¬x3 ∧ x2 ∧ x1) ∧ ¬(x3 ∧ x2 ∧ x1)

)
∨ (¬x1),

x′2 ↔
(
x2 ∧ ¬(¬x3 ∧ x2 ∧ x1) ∧ ¬(x3 ∧ x2 ∧ x1)

)
∨ (¬x2 ∧ x1),

x′3 ↔
(
x3 ∧ ¬(x3 ∧ x2 ∧ x1)

)
∨ (¬x3 ∧ x2 ∧ x1),

lx′ ↔ lx,

76 SPP in Classical Planning with Conditional Effects

3. conflicta(V) containing, for example, for x1, and for e1 = ix1 ∈ ∆+
inx(x1)

and e2 = ix2 ∈ ∆−inx(x1)

¬(¬x1 ∧ ¬x2 ∧ x1),

which is equivalent to ⊤, and similarly for all other CEs and variables.

When representing the transition relations via BDDs, as seen in Section
3.1.2, choosing the correct order of the variables is of paramount importance
to obtain a compact BDD. For the transition relation of an action with CEs, we
respect the following rules. Let a be an action, in the order of variables of the
BDD we impose that

1. the variable v′ should follow immediately the corresponding variable v,

2. the variables that appear in pre(a) should be put first, to prune earlier
all nodes in which the precondition is not respected,

3. for each CE e ∈ post(a), if v ∈ cond(e) and w ∈ eff(e), then w < v, to
prune earlier the nodes in which the effects are not possible.

It is clear that these rules, are just heuristics, but indeed produce good results
in the experimental analysis. Moreover, these rules could produce cyclic
dependencies between variables, that need to be arbitrarily broken.

Example 3.3 (COUNTERS (ctd.)). The above rules produce the order

lx; lx′;x3;x
′
3; . . . ;x1;x

′
1

and thus the BDD for the formula T (V, V ′) is as shown in Fig. 3.2.

3.3.2 Computing the Transitive Closure

Let Π = ⟨V,A, I,G⟩ be a planning task and a be an action of Π. Let Ta be the
transition function of a. The transitive closure function of Ta is a function
T+
a : S × S 7→ {⊤,⊥} such that for each state s, s′ ∈ S, (i) a is applicable in s,

(ii) there exists a k ≥ 1 such that s′ = res(s, ak), where ak is the sequence of
k repetitions of a.

3.3 Rolling Actions with Conditional Effects 77

The transitive closure function T+
a can be computed iteratively, starting

from the transition function Ta. Let’s rename Ta as T 0
a , i.e., the first step

transition of Ta(s, s′). Then for each i > 0 we define the i+1-th step transition
of Ta(s, s′), i.e., T ia : S × S 7→ {⊤,⊥} such that for each s, s′′ ∈ S

T ia(s, s
′′) ↔ ∃s′ ∈ S : T i−1a (s, s′) ∧ (T i−1a (s′, s′′) ∨ s′ = s′′), (3.2)

Due to the finiteness of the set of states S, we know there exists a p ≥ 1 such
that

∀s, s′ ∈ S, T pa (s, s
′) ↔ T p+1

a (s, s′), (3.3)

called the fix-point function. The transitive closure function is thus equivalent
to the fix-point function T pa . We call p the fix-point index.

Lemma 3.2. Let a be an action and let T ia be the i+1-th step transition function
in the computation of the transitive closure function T+

a , with i ∈ [0, k]. Let
s, s′ ∈ S be two states and let a be applicable in s. If T ia(s, s

′), then there exists a
r ∈ [1, 2i] such that s′ = res(s, ar).

Sketch Proof. For i = 0, T 0
a (s, s

′) = Ta(s, s
′) which by definition models s′ =

res(s, a), i.e., 20 = 1 applications of a. Then, given the computation procedure
outlined by Eq. 3.2, T 1

a models all the state reachable after up to 2 consecutive
applications of a. We can reach states with 2 applications, because T 1

a (s, s
′)

checks the applicability of a in s and T 1
a (s
′, s′′) checks the applicability of a in

s′. We can reach states with 1 applications because when s′ = s′′ in Eq. 3.2,
T 1(s, s′′) coincides with T 0(s, s′′). Continuing the computation, we see that
T 2
a can model up to 4 consecutive applications of a, since we have T 1

a to reach
s′ from s in at most 2 steps and again T 1

a to reach s′′ from s′ in at most 2 steps.
By induction, we conclude the proof.

The i + 1-th step transition relation function T ia(s, s
′) thus specifies if s′

is reachable from s in at most 2i applications of a. In the following sections
we will also need to know if the state is reachable in exactly 2i applications
of a. For this reason, we introduce the i+ 1-th step exponential reachability
function of an action a as Ri

a : S × S 7→ {⊤,⊥} defined inductively such that

78 SPP in Classical Planning with Conditional Effects

for each s, s′′ ∈ S

R0
a(s, s

′′) ↔ Ta(s, s
′′),

Ri
a(s, s

′′) ↔ ∃s′ ∈ S : Ri−1
a (s, s′) ∧Ri−1

a (s′, s′′). (3.4)

Lemma 3.3. Let a be an action and let Ri
a be its i + 1-th step exponential

reachability function.

Ri
a(s, s

′) ↔ s′ = res(s, a2
i

).

Sketch Proof. As for Lem. 3.2, by induction on Eq. 3.4.

Lemma 3.4. Let s be a state in which a is applicable. For any i ≥ 1, there exists
at most one state s′ such that Ri

a(s, s
′) = ⊤.

Sketch Proof. The proof follows easily from the determinism of the transition
function Ta(s, s′), since, applying a in any state s leads to only one state s′.

The computation of the transitive closure function and of the exponential
reachability function presents some difficulties due to the existential quantifier
(∃) in Eq. 3.2 and 3.4 and the universal quantifier (∀) in Eq. 3.3. To eliminate
these quantifiers, we can instead compute the transitive closure relation
T +
a (V, V ′) from the transition relation Ta(V, V ′), where V and V ′ are copies

of the variables in V . Eq. 3.2 thus becomes

T ia (V, V ′′) ↔ ∃V ′ : T i−1a (V, V ′) ∧ (T i−1a (V ′, V ′′) ∨ V ′ ≡ V ′′),

and distributing we obtain

T ia (V, V ′′) ↔ T i−1a (V, V ′′) ∨ (∃V ′ : T i−1a (V, V ′) ∧ T i−1a (V ′, V ′′)).

Thus, we can compute the i+1-th step transition T ia directly from the i-th step
through iterated applications of the smoothing operator S as presented in
Section 3.1.2 on all the variables in V ′ = {v′1, . . . , v′n} as

T ia (V, V ′′) = T i−1a (V, V ′′) ∨ Sv′∈V ′(T i−1a (V, V ′) ∧ T i−1a (V ′, V ′′)). (3.5)

3.3 Rolling Actions with Conditional Effects 79

1 0

Fig. 3.3 BDD representation of the transitive closure T +
inx(V, V

′) of the COUN-
TERS example.

To check whether a fix point has been reached, instead of relying on the
universal quantifier in Eq. 3.3, we can simply check whether the propo-
sitional formulas T pa (V, V ′) and T p+1

a (V, V ′) are equivalent. If we employ
BDDs to represent the two formulas, this check is straightforward, due to
the canonical representation provided by the BDDs. As for the transitive
closure function, there must exist a fix-point relation T pa (V, V ′) such that
T pa (V, V ′) ≡ T p+1

a (V, V ′) and thus the transitive closure is

T +
a (V, V ′) = T pa (V, V ′). (3.6)

For the exponential reachability function Ri
a, we can again employ the

exponential reachability relation Ri
a computed as

Ri
a(V, V

′′) = Sv′∈V ′Ri−1
a (V, V ′) ∧Ri−1

a (V ′, V ′′). (3.7)

As stated in the introduction of this chapter, computing the transitive
closure, can become intractable, due to formulas becoming exponentially
long, even when employing BDDs. However, the computation of the transitive
closure can be stopped at any time, before its fix-point index p, and the last
computed relation T ma (V, V ′) with m ∈ [0, p] is returned, which models the
state reachable with up to 2m repetitions of a (Lem. 3.2). It is clear that if a is
idempotent, then m = p = 0. We name T ma (V, V ′) as the timeout transition
relation and with m the timeout index.

Example 3.4 (COUNTERS (ctd.)). The BDD representation of the transitive
closure relation T +

inx(V, V
′), for the action inx with B = 3 bits, is represented

80 SPP in Classical Planning with Conditional Effects

in Fig. 3.3. It is clear, that since we allow overflowing (111→ 000), then from
any number we can reach any number, only if the precondition is respected.

3.4 The Transitive ≺-Encoding for Classical Plan-

ning with CEs

Let Π = ⟨V,A, I,G⟩ be a classical planning task with CEs. Let ≺ = a1; . . . ; ak

be a pattern. For each action ai in the pattern≺, let Tai(V, V ′) be the transition
relation of ai and let T +

ai
(V, V ′) be its transitive closure2. We now present the

transitive SPP encoding for Π, namely Π≺+. As for the numeric case presented
in Chapter 2, we assume to have the sets of variables X , A≺, X ′, representing
the current state, action and next state variables.

1. In A≺ we have a propositional variable a+i for each action ai in the
pattern, denoting that the action ai in ≺ is executed consecutively at
least one time.

2. The current state variables X contains

(a) all the variables in V , and

(b) for each non-idempotent action ai in the pattern ≺ and for each
v ∈ V , a propositional variable vi.

The set X ′ is, as usual, a copy of X . Thus, the transitive ≺-encoding for Π is
the formula

Π≺+ = I(X) ∧ T ≺+(X ,A≺,X ′) ∧ G(X ′),

in which

1. I(X) is the initial state formula, defined as∧
v∈I

v ∧
∧

w∈V \I

¬w,

2As stated before, the procedure presented will remain correct and complete even if,
for each action we do not employ its transitive closure relation, but we stop at its timeout
relation. For readability, we will still use T +

ai
instead of T m

ai
.

3.4 The Transitive ≺-Encoding for Classical Planning with CEs 81

2. G(X ′) is the goal state formula, defined as∧
v∈G

v ∧
∧
¬w∈G

¬w.

3. T ≺+(X ,A≺,X ′) is a transitive ≺-symbolic transition relation, providing
a definition of each variable in X ′ as a function of the variables in
X ∪A≺.

As for the numeric planning SPP encoding, for each i ∈ [0, k] we now
define the value σi(v) of each variable v ∈ V denoting the value of v after the
(possible and repeated) application of ai in ≺, i.e., a function of the variables
in X ∪ {a+1 , . . . , a+i }. By extension, we have σi = {σi(v) | v ∈ V }. Clearly, if
i = 0, σ0(v) = v while if i ∈ [1, k], σi(v) is recursively defined as follows:

1. if v ̸∈ add(a) ∪ del(a), the value of v does not change, and thus

σi(v) = σi−1(v),

2. if ai is idempotent, then

σi(v) =

(
σi−1(v) ∧

(
¬a+i ∨

∧
e∈∆−

a (v)

¬σi−1(ψe)
))
∨
(
a+i ∧

∨
e∈∆+

a (v)

σi−1(ψe)
)
,

which, if a+i = ⊥ collapses to σi(v) = σi−1(v), if a+i = ⊤ is the same as
Eq. 3.1,

3. if ai is non-idempotent, then

σi(v) = ITE(a+i , vi, σi−1(v))

The transitive ≺-symbolic transition relation T ≺+(X ,A≺,X ′) is thus the
conjunction of the union of the following sets:

1. closure≺+(A, V), which contains, for each action ai in the pattern,

a+i → T +
ai
(σi−1, σi),

where T +
ai
(σi−1, σi) is the formula T +

ai
(V, V ′) where each v ∈ V and

v′ ∈ V ′ are substituted with σi−1(v) and σi(v), respectively – i.e., if a+i is

82 SPP in Classical Planning with Conditional Effects

Algorithm 3.1 SPP algorithm applied to the case of CEs
1: function CES-SPP(Π) /* Π = ⟨V,A, I,G⟩ */
2: n← 0; ≺ ← ϵ;
3: ≺I ← COMPUTEPATTERN(Π);
4: while (TRUE) do
5: Π≺+ ← I(X) ∧ T ≺+(X ,A≺,X ′) ∧ G(X ′);
6: µ← SOLVE(Π≺+);
7: if (µ ̸= 0) then
8: return GETPLANCLOSURE(µ,≺);
9: end if

10: ≺ ← ≺;≺I ;
11: n← n+ 1;
12: end while
13: end function

executed, the state represented by σi must be reachable from the state
represented by σi−1,

2. frame≺+(V), which contains, for each v ∈ V ,

v′ ↔ σk(v).

3.5 Valid Plan with the Transitive ≺-Encoding.

Let Π = ⟨V,A, I,G⟩ be a planning task with CEs and let ≺ = a1; . . . ; ak be a
pattern. As for the numeric case, we can directly employ the SPP procedure
outlined in Alg. 2.1 of Chapter 2, repeated in Alg. 3.1 for readability, with
the only exception being the call GETPLANCLOSURE(µ,≺). In fact, in any
satisfiable model µ : X ∪ A ∪ X ′ 7→ {⊤,⊥} of Π≺+ and for each action ai in
the pattern ≺, we have µ(a+i) = ⊤ if ai must be executed at least one time.
We need thus a procedure able to compute exactly how many times ai must
be repeated, and thus produce a valid plan π for Π.

Let µ be a solution of the encoding Π≺+, found in Line 6 of Algorithm 3.1.
Let ai be an action of ≺ such that µ(a+i) = ⊤. We know that the value of
a variable v ∈ V before and after the rolling of ai is expressed through the
expressions σi−1(v) and σi(v) respectively. The states si−1, si before and after

3.5 Valid Plan with the Transitive ≺-Encoding. 83

Algorithm 3.2 Computation of the rolling of a needed to reach s′′ from s.

1: global T 0
a , . . . , T

p
a , R

0
a, . . . , R

p
a //previously computed

2: function ROLLING(a, s, s′′, p)
3: if T 0

a (s, s
′′) then

4: return 1
5: end if
6: for j ∈ [1, p] do
7: if T ja (s, s

′′) then
8: s′ ← s′ : Rj−1

a (s, s′)
9: return 2j−1 + ROLLING(a, s′, s′′, j − 1)

10: end if
11: end for
12: return -1
13: end function

the rolling of ai can thus be computed as

si−1 = {v | µ[σi−1(v)] = ⊤} si = {v | µ[σi(v)] = ⊤}, (3.8)

where µ[σi(v)] (resp. µ[σi−1(v)]) is the expression obtained by replacing
each variable w ∈ X in σi(v) (resp. σi−1(v)) with µ(w). Let T 0

ai
, . . . , T +

ai
be

the sequence of transition relations computed when computing the transitive
closure T +

ai
, and letR0

ai
, . . . ,R+

ai
be the correspondent exponential reachability

relations. We know that the transition function T ia(s, s
′) is true if and only

if the transition relation T ia (V, V ′) is equivalent to ⊤ when substituting each
v ∈ V (resp v′ ∈ V ′) with ⊤ if v ∈ s (resp. v ∈ s′) and with ⊥ otherwise. Alg.
3.2 shows the structure of the ROLLING algorithm, which takes as input the
action a, the state before (s) and after (s′′) the rolling of a and, initially, the
index p is either fix-point’s index or the timeout index. The algorithm, starting
from j = 0 explores whether s′′ is reachable from s in at most 2j times (Lem.
3.2), increasing j upon failure. When such a j is found, it means that the
rolling of a lies in (2j−1, 2j]. For this reason, Line 8 employs Lem. 3.4 and,
using the exponential reachability function Rj−1

a , finds the intermediate state
s′ after 2j−1 repetitions of a and calls again the function ROLLING, searching
the rolling of a to reach s′′ from s′, bounded by at most 2j−1. If state s′′ is
not reachable from s′ in up to 2p repetitions of a, then ROLLING returns −1,
signalling unreachability.

84 SPP in Classical Planning with Conditional Effects

Theorem 3.5. Let s, s′′ be two states, a be an action applicable in s, and let
p ≥ 0. r = ROLLING(a, s, s′′, p) > 0 implies s′′ = res(s, ar).

Proof. By induction. If s′′ = res(s, a), then T 0
a (s, s

′′) = Ta(s, s
′′) = ⊤ by

construction and ROLLING(a, s, s′′, p) = 1. Suppose that the thesis holds for
all r ∈ [1, 2j−1], for some j ∈ [1,m]. If r ∈ (2j−1, 2j], then, by Lem. 3.2, we
know T 0

a (s, s
′′) = · · · = T j−1a (s, s′′) = ⊥ and T ja (s, s

′′) = ⊤. Thus by Lem. 3.4,
we know there exists only one state s′ such that Rj−1

a (s, s′) = ⊤ and, by Lem.
3.3 we know that s′ = res(s, a(2

j−1)) thus, to reach s′′ from s′, we still need
r′ = r − 2j−1 repetitions. Since r ∈ (2j−1, 2j], then r′ ∈ [1, 2j−1] and following
the inductive hypothesis, r′ can be computed as ROLLING(a, s′, s′′, j − 1).

Finally, let π = a1; . . . ; ak be the pattern such that Π≺+ is satisfiable by
model µ, i.e., Line 7 of Alg. 3.1, the function GETPLANCLOSURE of Line 8
returns the sequence

π = ar11 ; . . . ; arkk ,

where ri for i ∈ [1, k] is computed as

ri = ROLLING(ai, si−1, si, pi)

with si−1 and si as described in Eq. 3.8 and pi being the index of the fix point
at which T +

ai
(V, V ′) is found.

3.6 Correctness, Completeness, and Domination

Let Π = ⟨V,A, I,G⟩ be a classical planning task with CEs. In this section, we
will prove some theoretical properties – namely correctness, completeness,
and domination – of the Π≺+ encoding we presented in the previous sections.

3.6.1 Correctness and Completeness

We recall from Chapter 2 that, as standard for PaS encodings, the transitive
≺-encoding Π≺+ has to guarantee the properties of correctness and complete-
ness.

3.6 Correctness, Completeness, and Domination 85

1. Correctness: each model µ of T ≺+(X ,A≺,X ′) has to correspond to at
least one sequence of actions α such that (i) α is applicable in the state
s = {v | µ(v) = ⊤} and (ii) the last state induced by α executed is the
state s′ = {v | µ(v′) = ⊤}.

2. Completeness: for each state s and action a in A, if s′ is the state
resulting from the application of a in s, then there must be a model µ
of T ≺+(X ,A≺,X ′) such that for each variable v ∈ V , v ∈ s iff µ(v) = ⊤
and v ∈ s′ iff µ(v′) = ⊤

Let Π≺0 be the ≺-encoding constructed the same way as Π≺+ but where, for
each action ai in ≺, the transitive closure T +

ai
(V, V ′) is substituted with the

transitive relation T 0
ai
(V, V ′), i.e., each action ai in ≺ can be executed at most

once.

Theorem 3.6. Let Π be a classical planning task with CEs, let ≺ be a complete
pattern. The ≺-encoding Π≺0 is correct and complete.

Proof. The correctness and completeness proof is a simplification of the nu-
meric case in Thm. 2.3 where VN = ∅ and VB = V and the effect axioms
modified as the one in Eq. 3.1.

Let M be a timeout function, assigning to each action ai in the pattern ≺
a positive number M(ai). We denote with Π≺M the ≺-encoding constructed
the same way as Π≺+ but where, for each action ai in ≺, the transitive closure
T +
ai
(V, V ′) is substituted with the transitive relation T M(ai)

ai (V, V ′), i.e., action
ai can be applied at most 2M(ai) times.

Theorem 3.7. Let Π be a classical planning task with CEs, let ≺ be a complete
pattern. The ≺-encoding Π≺M is correct and complete.

Proof. If, for each ai in ≺, M(ai) = 0, we fall back to Thm. 3.6. If, instead,
M(ai) ∈ [1, pi] for some action ai in ≺, where pi is the index of fix point
of the computation of the transitive closure T +

ai
. Correctness comes from

the correctness of the computation of the transitive closure in Lem. 3.2.
Completeness comes from the fact that one application of the action a+i
models between 1 and 2M(ai) executions of a and thus a model µ of T 0

ai
(V, V ′)

is also a model of T M(ai)
ai (V, V ′). If M(ai) > pi, due to the fix-point being

reached, we have T M(ai)
ai ≡ T +

ai
and we fall back to the previous case.

86 SPP in Classical Planning with Conditional Effects

Theorem 3.8. Let Π be a classical planning task with CEs, let ≺ be a complete
pattern. The ≺-encoding Π≺+ is correct and complete.

Proof. This is a special case of Thm. 3.7, where, for each ai in ≺, M(ai) = pi,
with pi being the index of fix point of the computation of the transitive
closure

Theorem 3.9. Let Π be a classical planning task with CEs. CES-SPP(Π) is
correct and complete.

Sketch Proof. The correctness follows directly from the correctness of Π≺+

and Thm. 3.5. For the completeness, according to Thm. 2.1, a plan of length
n will be found at most at the n-th iteration of the CES-SPP(Π) algorithm.

3.6.2 Domination

Let Π = ⟨V,A, I,G⟩ be a classical planning task with CEs. In the literature,
the most advanced approach for dealing with Classical Planning with CEs is
the R2∃-encoding ΠR2∃,≺, already presented in Section 2.3.2 for the numeric
case, where we consider the case in which VN = ∅ and VB = V and the use of
the formula in Eq. 3.1 for the effect axioms with CEs [Rintanen, 2011; Wehrle
and Rintanen, 2007; Balyo, 2013]. The ΠR2∃,≺ encoding can thus be mapped
in our encoding Π≺0, since the transitive closure is not employed, modelling,
in the transition relation T R2∃,≺(X ,A,X ′), only a single application of each
action a ∈ A.

Theorem 3.10. Let Π be a numeric planning problem. Let ≺ be a simple
and complete pattern and let M be a timeout function. The ≺-encoding Π≺M

dominates the ≺-encoding Π≺0 and the ≺-encoding Π≺+ dominates the ≺-
encoding Π≺M .

Proof. (Π≺M dominates Π≺0) To prove dominance we have to demonstrate
that, for any bound n, if Π≺0n is satisfiable the also Π≺Mn is satisfiable. This
follows directly from the fact that, for each action ai in the pattern, due to
Lem. 3.2, if T 0

ai
(V, V ′) is satisfiable (1 repetition), then also T M(ai)

ai (V, V ′) is
satisfiable (at least 1 repetition), since M(ai) ≥ 0.

3.7 Experimental Analysis 87

(Π≺+ dominates Π≺M) For each action ai, let M(ai) be in [0, pi] with pi

being the fix point index of ai. Since T +
ai
(V, V ′) is equivalent by construction to

T piai (V, V ′), by Lem. 3.2, we have that if T M(ai)
ai (V, V ′) is satisfiable (between

1 and 2M(ai) repetitions) then T piai (V, V ′) is satisfiable (between 1 and 2pi

repetitions). If, for each action ai, M(ai) > pi, then we have T M(ai)
ai (V, V ′) ≡

T piai (V, V ′).

3.7 Experimental Analysis

To analyse our approach, we present an experimental analysis run on the
COUNTERS domain, the motivating example of this chapter, slightly extended
to deal with multiple counters instead of just two. Figure 3.4 shows the
analysis run on the COUNTERS domain with 5 counters and on problems with
increasing bits B, from 2 to 12. We employed the search-based solver ENHSP

[Scala et al., 2016c], the PaS-based MADAGASCAR solver (MPC) [Rintanen,
2011], which is the only PaS solver in the literature able to deal with CEs, and
which implements the R2∃-encoding, and our solver PATTY, modified to deal
with CEs with the presented approach. For each solver, we provided a timeout
of 5 minutes for finding a valid plan and for the PATTY solver, we provided a
timeout of 1 minute for computing the transitive closure for each action. After
this timeout, the last found transition relation was returned. Experiments
have been run on Intel Xeon Platinum 8000 3.1GHz with 8 GB of RAM.

It is worth noticing that, in the case with 5 counters {c1, . . . , c5}, there are
14 actions in A: 5 actions to increase each counter, 5 actions to decrease them
and 4 actions to lock adjacent counters, i.e., if ci and ci+1 have the same bits,
with i ∈ [1, 4]. The actions to lock the counters are idempotent, and thus the
transitive closure computation can be skipped. For the other 10 actions, is
sufficient to compute the transitive closure for the action to increase c1 and
the action to decrease c1, and then substitute the variables in the resulting
formula for all the other 4 counters. For each problem with B bits, the initial
state sets the counters c1,c3 and c5 to 2B−1, and counters c2 and c4 to 0. Thus,
each counter must be increased/decreased at least 2B−2 times to reach the
adjacent counter.

88 SPP in Classical Planning with Conditional Effects

Figure 3.4, shows that the ENHSP solver can rapidly solve the problems
up to 6 bits, starting to struggle with 7 bits and being unable to solve the
problem with 8 or more bits before the timeout. The MADAGASCAR solver
instead cannot solve problems with more than 5 bits, due to the exponential
nature of the bound. It can be noted how with B bits, MADAGASCAR can
solve the problem with bound n = 2B−2 +1, i.e., 2B−2 steps to increase all the
counters by 2B−2 and another step to lock all the adjacent counters. The PATTY

solver, instead, can solve all the problems up to 10 bits with bound n = 1. The
dashed black line represents the time it takes to compute the transitive closure
of the two actions. It is clear, that with B bits, for each action a, the transitive
closure T +

a is equivalent to T Ba , since either the increase or the decrease can
be repeated at most 2B − 1 times (Lem. 3.2). When there are 11 bits, the
computation of the transitive closure for the two actions timeouts, and it is
returned the last transition relation found, in this case, for each action a, it
is T 8

a , modelling up to 28 repetitions of either increase or decrease of each
counter. For this reason, with B = 11, the bound is equal to n = 2, since

1 2 3 4 5 6 7 8 9 10 11 12

Number of bits

0

50

100

150

P
la

n
n

in
g

T
im

e
[s

] tc

enhsp

p

mpc

1 2 3 4 5 6 7 8 9 10 11 12

Number of bits

0

2

4

6

8

10

B
ou

n
d

p

mpc

Fig. 3.4 Experimental analysis run on the COUNTERS domain with 5 counters
and on problems with increasing bits B, from 2 to 12. The comparison is made
with the ENHSP solver, the Madagascar (MPC) solver and our PATTY, modified
to deal with CEs. The dashed black line indicates the time to compute the
transitive closure. The top line-chart measures the planning time in seconds
w.r.t. the number of bits and the bottom line-chart measures the bound at
which the solution was found.

3.8 Conclusion and Future Work 89

the first bound takes care of 28 increases/decreases of the counters and the
second bound performs the other 28, for a total of 2B−2 = 29 repetitions. It
can be noted how the domination proved in Thm. 3.10 is confirmed in the
experimental analysis, since the bound at which MADAGASCAR finds a solution
is always greater than the one in which PATTY finds a solution.

3.8 Conclusion and Future Work

In this chapter, we examinated the flavour of classical planning with CEs.
Given the symmetry proposed by [Gigante and Scala, 2023], we investigated
how we could bring the concept of rolling also to classical planning with CEs,
where non-idempotent actions can be consecutively repeated. We found the
answer to our investigation in the computation of the transitive closure, and
we proposed a SPP approach which outperforms state-of-the-art solvers and
provably dominated all PaS approaches existing in the literature.

In the experimental analysis, we saw that most of the computation is
dedicated to computing the transitive closure of each non-idempotent action.
In our approach, we applied a naive and basic computation of the transitive
closure, but in the past three decades, there has been a lot of effort in finding
faster ways to compute the transitive closure, either through partitioning of
variables and formulas [Cabodi et al., 1997; Geldenhuys and Valmari, 2001],
use of transformations to integer functions [Ciardo et al., 2001], matrix
manipulations [van Dijk et al., 2019; Brand et al., 2023]. Moreover, the use of
BDDs has already been proven very effective in heuristics for classical planning
[Edelkamp and Reffel, 1998; Kissmann and Hoffmann, 2013, 2014] and thus
it could be worthwhile to explore strategies to improve the transitive closure
computation exploiting the special case of Classical Planning with CEs.

Chapter 4

SPP in Numeric Temporal Planning

In this chapter1, we consider temporal numeric planning problems expressed
in PDDL 2.1 level 3 [Fox and Long, 2003]. Differently from the classical case,
where plans are sequences of instantaneous actions and variables are Boolean,
in these problems actions may have a duration, are executed concurrently over
time, and can affect Boolean and numeric variables at both the start and end
of their execution. These two extensions make the problem of finding a valid
plan much more difficult –even undecidable in the general case [Helmert,
2002; Gigante et al., 2022]– and extending state-of-the-art solving techniques
from the classical/numeric to the temporal numeric setting is far from easy.

In this chapter, we extend the recently proposed Symbolic Pattern Planning
(SPP) approach of Chapter 2 to handle temporal numeric problems. To test
the effectiveness of our approach, we compare our planner with all publicly
available temporal planners (both symbolic and based on search) on 10 tem-
poral domains with required concurrency [Cushing et al., 2007]. The results
highlight the strong performance of our planner, which achieved the highest
coverage (i.e., number of solved problems) in 9 out of 10 domains, while
the second-best planner had the highest coverage in 4 domains. Additionally,
compared to the other symbolic planners, our system can find a valid plan
with a lower bound on all the problems.

1Part of this chapter has been published in [Cardellini and Giunchiglia, 2025]

4.1 Preliminaries 91

4.1 Preliminaries

In PDDL2.1 [Fox and Long, 2003] a temporal numeric planning problem is a
tuple Π = ⟨VB, VN , A, I, G⟩, where

1. VB and VN are finite sets of Boolean and numeric variables, ranging
over {⊤,⊥} and Q respectively,

2. I is a selected initial state, and a state is a function mapping each
variable to an element in its domain,

3. G is a finite set of conditions, called goals. A condition is either v = ⊤
or v = ⊥ or ψ ⊵ 0, with v ∈ VB, ψ a linear expression in VN and
⊵ ∈ {<,≤,=,≥, >}.

4. A is a finite set of (instantaneous/snap) actions and durative actions. An
action a is a pair ⟨pre(a), eff(a)⟩ in which (i) pre(a) are the (pre)conditions
of a, and (ii) eff(a) are the effects of a of the form v := ⊤, v := ⊥, x := ψ,
with v ∈ VB, x ∈ VN and ψ a linear expression in VN . For each action
a, every variable v ∈ VB ∪ VN must occur in eff(a) at most once to the
left of the assignment operator “:=", and when this happens v is said to
be assigned by a. A durative action b is a tuple ⟨b⊢, b⊢⊣, b⊣, [L,U]⟩, where
b⊢, b⊢⊣, b⊣ are the actions starting, lasting and ending b, respectively, and
L,U ∈ Q>0 are bounds on the duration d of b, L ≤ U . The action b⊢⊣

has no effects, and its preconditions pre(b⊢⊣) must hold throughout the
execution of b. From here on, for simplicity, we consider only dura-
tive actions, as snap actions can be treated as durative actions without
lasting and ending actions, as in [Panjkovic and Micheli, 2023].

Let Π = ⟨VB, VN , A, I, G⟩ be a temporal numeric planning problem. A
timed durative action is a pair ⟨t, b⟩ with t ∈ Q≥0 and b a durative action
⟨b⊢, b⊣, b⊢⊣, [L,U]⟩ in which [L,U] is replaced with a single duration value
d ∈ [L,U]: t (resp. t + d) is the time in which b⊢ (resp. b⊣) is executed. A
temporal (numeric) plan π for Π is a finite set of timed durative actions. Thus,
in π, multiple snap actions can be executed at the same time, but any two
such actions a and a′ must be non mutex, i.e., a must not interfere with a′,
and vice versa. An action a does not interfere with an action a′ if for every
variable v assigned by a

92 SPP in Numeric Temporal Planning

1. v does not occur in the preconditions of a′, and

2. if v ∈ VB, either v is not assigned by a′ or v := ⊤ ∈ eff(a) if and only if
v := ⊤ ∈ eff(a′), and

3. if v ∈ VN then either v does not occur in the effects of a′ or the only
occurrences of v in both a and a′ are within linear increments of v. An
expression v := v + ψ is a linear increment of v if v does not occur in ψ.

If a and a′ are not in mutex, the order in which they are executed in any state
s does not matter, i.e., res(a, res(a′, s)) = res(a′, res(a, s)). The expression
res(a, s) is the result of executing a in state s, which (i) is defined when s

satisfies the preconditions of a, and (ii) is the state s′ = res(a, s) such that for
each v ∈ VB ∪ VN , s′(v) = s(e) if v := e ∈ eff(a), and s′(v) = s(v) otherwise.
Given a set A = {a1, . . . , an} of pairwise non mutex actions, we write res(A, s)
as an abbreviation for res(a1, . . . , res(an, s) . . .), order not relevant.

Consider a temporal plan π. The execution of π induces a sequence of
states s0, s1; . . . ; sm, each state si with an associated time ti > ti−1 at which a
non empty set Ai of actions, each starting/ending a durative action in π, is
executed. The temporal plan π is valid if:

1. s0 is the initial state, si+1 = res(Ai+1, si) and sm satisfies the goal
formulas, with i ∈ [0,m);

2. ϵ-separation: for any pair of mutex actions a ∈ Ai and a′ ∈ Aj, |ti− tj| ≥
ϵ > 0 (and thus i ̸= j);

3. no self-overlapping: for any two distinct timed durative actions ⟨t, b⟩ and
⟨t′, b⟩ with durations d and d′ respectively, if t′ ≥ t in π, then t′ ≥ t+ d;

4. lasting-action: for each timed durative action ⟨t, ⟨b⊢, b⊣, b⊢⊣, d⟩⟩ in π,
if b⊢ and b⊣ are executed at ti = t and tj = ti + d respectively, the
preconditions of b⊢⊣ are satisfied in each state si, . . . , sj−1.

4.2 Standard Encodings in SMT

Several approaches for computing a valid plan of Π have been proposed, either
based on search (see, e.g., [Benton et al., 2012; Gerevini et al., 2010; Eyerich

4.2 Standard Encodings in SMT 93

et al., 2012]) or on planning as satisfiability (see, e.g., [Shin and Davis, 2004,
2005; Rankooh and Ghassem-Sani, 2015; Rintanen, 2015; Cashmore et al.,
2016; Rintanen, 2017; Cashmore et al., 2020; Panjkovic and Micheli, 2023,
2024]). We follow the second approach, in which (i) a bound or number
of steps n (initially set to 0) is fixed, (ii) a corresponding SMT formula is
produced, and (iii) a valid plan is returned if the formula is satisfiable, while
n is increased and the previous step iterated, otherwise. In more detail, given
a temporal numeric planning problem Π = ⟨VB, VN , A, I, G⟩ and a value for
the bound n ≥ 0, in the second step, these works:

1. Make n+ 1 copies of a set X of state variables which includes VB ∪ VN ,
each copy Xi meant to represent the state at the i-th step; make n copies
of a set A of (Boolean) durative action variables which includes A, each
copy Ai meant to represent the durative actions executed at the i-th
step; and introduce a set {t0, . . . , tn} of time variables, each ti being the
time associated to the i-th state Xi.

2. Impose proper axioms defining the value of the variables in Xi+1 on the
basis of the values of the variables in Xi, and of the snap actions which
are executed in the state Xi. In particular, these axioms enforce in the
state Xi+1 the effects of the actions executed in the state Xi, and also
that no two mutex actions are executed in Xi.

A similar construction underpins also the standard encoding used for classical
and numeric planning problems. However, in these contexts, the standard
encoding is known to underperform compared to the R encoding by Scala
et al. (2016d), the R2∃ encoding by Bofill et al. (2016), and the pattern
≺-encoding of Chapter 2. Indeed, at each step i ∈ [0, n),

1. in the R encoding, each action variable can be “rolled-up" taking a
value in N≥0 representing how many times the action is consecutively
executed,

2. the R2∃ encoding allows for the execution of actions in mutex and/or
with contradictory effects, and

3. the ≺-encoding allows for the consecutive execution of actions, even if
in mutex and with contradictory effects.

94 SPP in Numeric Temporal Planning

As a consequence, the ≺-encoding dominates the R2∃ and R encodings, which
in turn dominate the standard encoding. This dominance usually leads to
better performance, as the number of solver calls, along with the number of
variables and the encoding size, all increase linearly with the bound n.

To highlight the potential benefits of moving from the standard encoding
to the ≺-encoding also in the temporal numeric setting, consider the following
simplified version of the bottle example from [Shin and Davis, 2005].

Example. There is a set {1, . . . , q} of bottles, the first p of which containing li
litres of liquid (i ∈ [1, p]), and the action pri,j of pouring from the i-th bottle
(with effects at start) in [1, p] into the j-th bottle in (p, q] (with effects at end),
one litre every di,j seconds. In the current encodings, each pri,j is Boolean and
thus can be executed at most once in between two consecutive states. Further,
time variables are associated to the states. For these reasons, with a current
encoding S, the goal of emptying the bottles in [1, p] needs a number of steps
n ≥ maxpi=1 li, how many depending also on the specific di,j values since each
executed pri,j can start/end at a different time from the others. Further, S needs
at least n =

∑p
i=1 li steps when q = p+1, due to the conflicting effects of pouring

to a single bottle.

Despite the apparent complexity introduced by the temporal aspects,
[Cushing et al., 2007] demonstrated that these problems are no more difficult
than their numeric counterparts without the temporal requirements. Indeed,
in the above domain each problem admits a solution in which all the durative
actions are sequentially executed, one after the other. For this reason, such
problems are said to be without required concurrency [Cushing et al., 2007],
and they can be (more easily) solved by non temporal planners by (i) replacing
each durative action b with a snap action combining the preconditions and
effects of b⊢, b⊢⊣, b⊣, (ii) finding a sequential solution to the resulting non
temporal problem, and (iii) post-process the found solution to introduce
execution times. We thus consider the following example, whose problems
require concurrency.

Example (cont’d). Consider the previous example extended with nck which
at start uncaps the bottle k ∈ [1, q] and then caps it back after dk seconds. Any
problem in which all the bottles are initially capped requires concurrency since
pouring from i to j is possible only if both bottles i and j are uncapped. This

4.3 Temporal Numeric Planning with Patterns 95

scenario can be modelled in PDDL 2.1 with VB = {ck | k ∈ [1, q]}, VN = {lk |
k ∈ [1, q]} and the set of durative actions A = {nck | k ∈ [1, q]} ∪ {pri,j | i ∈
[1, p], j ∈ (p, q]} whose actions are:

pr⊢i,j : ⟨{ci = ⊥, li > 0, cj = ⊥}, {li −= 1}⟩,
pr⊢⊣i,j : ⟨{ci = ⊥, cj = ⊥}, ∅⟩,pr⊣i,j : ⟨∅, {lj += 1}⟩,

nc⊢k : ⟨{ck = ⊤}, {ck := ⊥}⟩,nc⊣k : ⟨{ck = ⊥}, {ck := ⊤}⟩.

As customary, v += ψ (resp. v −= ψ) is an abbreviation for v := v + ψ (resp.
v := v − ψ). With q = 2 and p = 1, there are three durative actions pr1,2, nc1

and nc2. Considering the starting/ending actions, pr⊢1,2 is mutex with nc⊢1 , nc⊣1 .
nc⊢2 , nc⊣2 . If the bottles are initially capped and the durations allow to pour all
the litres with just one execution of nc1 and nc2), we need a bound

1. n = l1 + 3 with the standard encoding (one step for uncapping the bottles,
1 step for starting the first pour action after ϵ time, l1 steps for pouring the
litres and the final step for executing the capping of the bottles),

2. n = 4 if we generalize the R encoding since we can roll-up the pr1,2 action
and collapse the l1 steps into 1,

3. n = l1 if we generalize the R2∃ encoding since we can execute all the
actions (even the mutex ones) in one step except for the repeated execution
of pr1,2 (action variables are still Boolean),

4. n = 1 if we generalize the ≺-encoding since we can execute all the actions
in one step.

If, e.g., q = 4 and p = 2 in the standard encoding we need n = l1 + l2 + 3 steps
if the durations of the pour actions forces them to start/end at different times,
while we can maintain n = 1 generalizing the ≺-encoding.

4.3 Temporal Numeric Planning with Patterns

Let Π = ⟨VB, VN , A, I, G⟩ be a temporal numeric planning problem. Here,
we extend the SPP approach to the temporal setting by (i) formally defining
the notion of pattern ≺ and defining the sets X ,A≺, T ≺,X ′ of variables used
in our encoding; (ii) extending the definition of rolling to durative actions;

96 SPP in Numeric Temporal Planning

(iii) defining the pattern state encoding formula, T≺s (X ,A≺,X ′), setting the
value of each variable in X ′ as a function of X and A≺; (iv) defining the
pattern time encoding formula, T≺t (A≺, T ≺), enforcing the desired temporal
properties of the actions; and (v) proving the correctness and completeness
of the presented encoding. Each point is treated in a separate subsection.

4.3.1 Pattern and Language Definition

A pattern is a finite sequence≺ = a1; a2; . . . ; ak of actions, each starting/ending
a durative action in A. A pattern is arbitrary, allowing for multiple occurrences
of the same action, even consecutively. Each action in the pattern corresponds
to a distinct variable in the encoding, and, given the variable name, we have
to be able to uniquely identify

1. which durative action it is starting/ending, and

2. which of the possible multiple occurrences of the action in ≺ we are
considering.

In order to have simple variable names associated to each action in the pattern,
we perform the following two initial steps which do not affect the generality
of our approach:

1. Whenever in A there are two distinct durative actions b1 and b2 with
b⊢1 = b⊢2 or b⊢1 = b⊣2 or b⊣1 = b⊣2 , we break the identity by adding to the
preconditions of one of the two actions an always satisfied condition
like 0 = 0, and

2. In a pattern ≺, repeated occurrence of an action a are replaced with
distinct copies a′. Both a and a′ are assumed to be starting/ending the
same durative action b, and, abusing notation, we write, e.g., a = b⊢

and a′ = b⊢.

We can therefore take the action in the pattern to be the action variables in
our encoding, and we can assume that each action starts/ends exactly one
durative action.

Consider a pattern ≺ = a1; a2; . . . ; ak, k ≥ 0. Our encoding is based on the
following sets of variables:

4.3 Temporal Numeric Planning with Patterns 97

1. X = VB ∪ VN to represent the initial state;

2. X ′ containing a next state variable x′ for each state variable x ∈ X , used
to represent the goal state;

3. A≺ consisting of the set of actions in the pattern ≺, each variable ai
ranging over N≥0 and whose value represents the number of times the
durative action started/ended by ai is consecutively executed/rolled up,
with i ∈ [1, k];

4. T ≺, with (i) a variable ti ∈ Q≥0 representing the time in which the i-th
action ai in ≺ is executed; (ii) if ai is starting b, a variable di ∈ Q≥0

representing the time taken by the consecutive execution of b for p times,
where p ≥ 0 is the value assumed by the variable ai ∈ A≺, and (iii) for
convenience, a variable t0 = 0 as the initial time.

In the following we keep using v, w, x for state variables, ψ for a linear expres-
sion, a for a (snap) action, b for a durative action, t for a time variable and d
for a duration, each symbol possibly decorated with subscripts/superscripts.

4.3.2 Rolling Durative Actions

We start by defining when a durative action b can be rolled up. Intuitively, b
can be consecutively executed more than once when (i) the Boolean effects
of its starting/ending actions do not disable the repetition of b given the
preconditions of its starting/lasting/ending actions, (ii) the numeric effects
of b⊢ and b⊣ do not interfere between themselves, and (iii) it might be useful
to execute b more than once. Formally, we say that b is eligible for rolling if
the following three conditions are satisfied:

1. if V, V ′ ∈ {⊥,⊤}, V ̸= V ′, then (i) v = V ∈ pre(b⊢) iff v := V ∈ eff(b⊣)

or v := V ′ ̸∈ eff(b⊢) ∪ eff(b⊣), and (ii) v = V ∈ pre(b⊢⊣) ∪ pre(b⊣) iff
v := V ∈ eff(b⊢) or v := V ′ ̸∈ eff(b⊢) ∪ eff(b⊣);

2. if v := ψ is a numeric effect of b⊢ or b⊣, then (i) v does not occur in any
other effect of b⊢ or b⊣, and (ii) either v does not occur in ψ or v := ψ is
a linear increment;

3. b⊢ or b⊣ include a linear increment in their effects.

98 SPP in Numeric Temporal Planning

If b has a duration in [L,U] and is eligible for rolling, consecutively executing
b for p ≥ 1 times

1. has a duration in [p×L+ (p− 1)× ϵb, p×U + (p− 1)× ϵb], where ϵb = ϵ

if b⊢ and b⊣ are mutex, and ϵb = 0 otherwise. Such interval allows for
ϵ-separation if b⊢ and b⊣ are mutex;

2. causes v to get value (p × ψ) if v += ψ is a linear increment of b⊢ or
b⊣, while all the other variables keep the value they get after the first
execution of b.

Notice that it is assumed that all the consecutive executions of b have the
same duration. Indeed, according to the semantics, the duration of b can
be arbitrarily fixed as long as each single execution respects the duration
constraints, which are part of the domain specification. This assumption
does not affect the completeness of our encoding. Should every valid plan
require two consecutive executions of b with different durations, we will
find a plan when considering a pattern with two or more occurrences of
the starting/ending actions of b. Indeed, rolling is an optimization, and our
procedure is complete even if we rule out rolling by adding the constraint
a ≤ 1 for each action a.

Then, for each i ∈ [0, k], the value of a variable v ∈ VB ∪ VN after the
sequential execution of a1; . . . ; ai, each action possibly repeated multiple
times, is given by σi(v), inductively defined as σ0(v) = v, and, for i > 0,

1. if v is not assigned by ai, σi(v) = σi−1(v);

2. if v := ⊤ ∈ eff(ai), σi(v) = (σi−1(v) ∨ ai > 0);

3. if v := ⊥ ∈ eff(ai), σi(v) = (σi−1(v) ∧ ai = 0);

4. if v += ψ ∈ eff(ai) is a linear increment,

σi(v) = σi−1(v) + ai × σi−1(ψ),

i.e., the value of v is incremented by σi−1(ψ) a number of times equal to
the value assumed by the variable ai;

4.3 Temporal Numeric Planning with Patterns 99

5. if v := ψ ∈ eff(ai) is not a linear increment,

σi(v) = ITE(ai > 0, σi−1(ψ), σi−1(v)).

Above and in the following, for any linear expression ψ and i ∈ [0, k], σi(ψ)
is the expression obtained by substituting each variable v ∈ VN in ψ with
σi(v). Given a durative action b eligible for rolling and a state s, to determine
the maximum number of times that b can be executed consecutively in s, we
rely on the following Theorem, in which ψ[p, b⊢, q, b⊣] represents the value
of ψ after p and q repetitions of the actions b⊢ and b⊣, respectively. Formally,
ψ[p, b⊢, q, b⊣] is the expression obtained from ψ by substituting each variable x
with

1. x+ p× ψ′ (resp. x+ q × ψ′), when x += ψ′ ∈ eff(b⊢) (resp. x += ψ′ ∈
eff(b⊣)) is a linear increment, and

2. ψ′′, when x := ψ′′ ∈ eff(b⊢) ∪ eff(b⊣) is not a linear increment.

Theorem 4.1. Let b be a durative action eligible for rolling. Let s be a state. The
result of executing b⊢; b⊢⊣; b⊣ consecutively for p ≥ 1 times in s is defined if and
only if for each numeric condition ψ ⊵ 0,

1. if ψ ⊵ 0 ∈ pre(b⊢), s satisfies ψ[0, b⊢, 0, b⊣] ⊵ 0 (i.e., ψ ⊵ 0) and ψ[p −
1, b⊢, p− 1, b⊣]⊵ 0;

2. if ψ ⊵ 0 ∈ pre(b⊢⊣) ∪ pre(b⊣), s satisfies ψ[1, b⊢, 0, b⊣] ⊵ 0 and ψ[p, b⊢, p −
1, b⊣]⊵ 0.

Proof. The thesis follows from the monotonicity in p of the functions ψ[p−
1, b⊢, p− 1, b⊣] and ψ[p, b⊢, p− 1, b⊣] (see Thm. 2.2).

Example (cont’d). For i ∈ [1, p], j ∈ (p, q], the pouring action pri,j is eligible
for rolling while both nci and ncj are not. Action pri,j can be consecutively
executed for li times in the states in which bottles i and j are uncapped and at
least li litres are in the i-th bottle.

100 SPP in Numeric Temporal Planning

4.3.3 The Pattern State Encoding

Let ≺ = a1; a2; . . . ; ak, k ≥ 0, be a pattern. The pattern state encoding defines
the executability conditions of each action and how to compute the value
of each variable in X ′ based on the values of the variable in X and in A≺.
Formally, the pattern state ≺-encoding T≺s (X ,A≺,X ′) of Π is the conjunction
of the formulas in the following sets:

1. pre≺(A): for each i ∈ [1, k] and for each v = ⊥, w = ⊤, ψ ⊵ 0 in pre(ai):

(a) ¬v and w must hold to execute ai:

ai > 0→ (¬σi−1(v) ∧ σi−1(w)),

(b) and, if ai is starting b, (i.e., if ai = b⊢) (Theorem 4.1):

ai > 0→ σi−1(ψ[0, b
⊢, 0, b⊣])⊵ 0,

ai > 1→ σi−1(ψ[ai − 1, b⊢, ai − 1, b⊣])⊵ 0,

(c) if ai is ending b, (i.e., if ai = b⊣) (Theorem 4.1, noting that in σi−1,
b⊢ has been executed ai times):

ai > 0→ σi−1(ψ[−ai + 1, b⊢, 0, b⊣])⊵ 0,

ai > 1→ σi−1(ψ[0, b
⊢, ai − 1, b⊣])⊵ 0.

2. amo≺(A): for each i ∈ [1, k], if ai is starting a durative action which is
not eligible for rolling:

ai ≤ 1.

3. frame≺(VB ∪ VN): for each variable v∈VB and w∈VN :

v′ ↔ σk(v), w′ = σk(w).

Example (cont’d). Assume p = 2 and q = 4. Let

nc⊢1 ;nc
⊢
2 ;nc

⊢
3 ;nc

⊢
4 ;pr

⊢
1,3;pr

⊢
1,4;pr

⊢
2,3;pr

⊢
2,4;

nc⊣1 ;nc
⊣
2 ;nc

⊣
3 ;nc

⊣
4 ;pr

⊣
1,3;pr

⊣
1,4;pr

⊣
2,3;pr

⊣
2,4.

(4.1)

4.3 Temporal Numeric Planning with Patterns 101

be the fixed pattern ≺. Assume i ∈ [1, 2], j ∈ [3, 4], k ∈ [1, 4]. The pattern state
encoding entails (nc⊢k ≤ 1) since the durative action nc is not eligible for rolling,
and

nc⊢i > 0→ ci, nc⊣i > 0→ ¬(ci ∧ nc⊢i = 0),

pr⊢i,j > 0→ (¬(ci ∧ nc⊢i = 0) ∧ ¬(cj ∧ nc⊢j = 0)),

pr⊢i,3 > 0→ li > 0, pr⊢i,4 > 0→ li − pr⊢i,3 > 0,

pr⊢i,3 > 1→ pr⊢i,3 < li, pr⊢i,4 > 1→ pr⊢i,4 < li − pr⊢i,3,
c′k ≡ (ck ∧ nc⊢k = 0) ∨ nc⊣k > 0,

l′i = li − pr⊢i,3 − pr⊢i,4, l′j = lj + pr⊣1,j + pr⊣2,j .

The first four lines define the preconditions for executing each action, and the
last two specify the frame axioms.

As the frame axioms in the example make clear, the ≺-encoding allows in
the single state transition from X to X ′ (i) the multiple consecutive execution
of the same action, as in the rolled-up R encoding [Scala et al., 2016d], and
(ii) the combination of multiple even contradictory effects on a same variable
by different actions, as in the R2∃ encoding [Bofill et al., 2016].

4.3.4 The Pattern Time Encoding

Let ≺ = a1; a2; . . . ; ak, k ≥ 0, be a pattern. The pattern time ≺-encoding
associates to each action ai in ≺ a starting time ti and duration di, which
are both set to 0 when ai is not executed, i.e., when ai = 0. In defining
the constraints for ti and di they have to respect the semantics of temporal
planning problems and also the causal relations between the actions in the
pattern and exploited in the pattern state ≺-encoding. Consider for instance
two actions ai and aj in ≺ with i < j, ai > 0 and aj > 0. We surely have
to guarantee that ti < tj if ai and aj are in muteq:chapter4: the formulas
checking that the preconditions of aj (resp. ai) are satisfied, take into account
that ai (resp. aj) has been (resp. has not been) executed before aj (resp. ai).
Even further, we have to impose that ti + ϵ ≤ tj for the ϵ-separation rule.
If, on the other hand, ai and aj are not in mutex, then it is not necessary
to guarantee ti < tj unless aj is ending the durative action started by ai

or because of the lasting action of the durative action started by aj. As an
example of the impact of the lasting action on the encoding, assume aj is
starting action b. Then, it may be the case ai is not in mutex with aj but it is

102 SPP in Numeric Temporal Planning

in mutex with the lasting action b⊢⊣ of b. Hence, the formulas checking the
executability of b⊢⊣ encode that ai precedes aj in the pattern, and consequently
we will have to guarantee ti < tj.

Given the above, the pattern time ≺-encoding T≺t (A≺, T ≺) of ≺ is the
conjunction of (t0 = 0) and the following formulas:

1. dur≺(A): for each durative action ⟨b⊢, b⊣, b⊢⊣, [L,U]⟩ ∈ A and for each
action ai = b⊢ and aj = b⊣ in ≺:

ai > 0→ ti ≥ t0 + ϵ,

ai = 0→ ti = t0 ∧ di = 0, aj = 0→ tj = t0,

ai > 0→ ai × (L+ ϵb) ≤ di + ϵb ≤ ai × (U + ϵb).

The last formula guarantees also ϵ-separation when b is consecutively
executed, and b⊢ and b⊣ are in mutex.

2. start-end≺(A): for each durative action b, each starting action ai = b⊢

(resp. ending action aj = b⊣) in ≺ must have a matching ending (resp.
starting) action:

ai > 0→ ∨
j∈Ei

(ai = aj ∧ tj = ti + di),

aj > 0→ ∨
i∈Sj

(ai = aj ∧ tj = ti + di),

where Ei = {j ∈ (i, k] | ai = b⊢, aj = b⊣}, and Sj = {i ∈ [1, j) | aj =
b⊣, ai = b⊢}.

3. epsilon≺(A): every two actions ai and aj in ≺ with j < i are ϵ-separated
if they are mutex or different copies of the same action:

ai > 0→ (ti ≥ tj + ϵ).

Further, for every two actions ai and aj starting respectively b and b′, if
the starting or ending action of b is mutex with the starting or ending
action of b′:

ai > 1→ (ti ≥ tj + dj ∨ tj ≥ ti + di∨
aj = 1 ∧ ti ≥ tj ∧ ti + di ≤ tj + dj).

4.3 Temporal Numeric Planning with Patterns 103

This formula ensures that the start/end actions of b′ are not executed
during the multiple consecutive executions of b, thereby guaranteeing
ϵ-separation.

4. noOverlap≺(A): for each durative action b, each starting action ai = b⊢

in ≺ can be executed only after the previous executions of b ended:

ai > 0→ ∧
j∈Bi

(ti ≥ tj + dj),

where Bi = {j ∈ [1, i) | ai = b⊢, aj = b⊢}.

5. lasting≺(A): for each durative action b with pre(b⊢⊣) ̸= ∅, and for each
action ai = b⊢ in ≺:

(a) The preconditions of b⊢⊣ must be satisfied in each (consecutive)
execution of b, i.e., for each v = ⊥, w = ⊤, ψ ⊵ 0 in pre(b⊢⊣)

(Theorem 4.1):

ai > 0→ ¬σi(v) ∧ σi(w) ∧ σi−1(ψ[1, b⊢, 0, b⊣])⊵ 0,

ai > 1→ σi−1(ψ[ai, b
⊢, ai − 1, b⊣])⊵ 0.

(b) For each action aj in ≺ mutex with b⊢⊣,

i. if j < i, then aj cannot be executed after ai:

ai > 0→ ti ≥ tj,

and, when aj is a starting action, also:

ai > 0 ∧ aj > 1→ ti ≥ tj + dj.

These formulas ensure that b does not start until all executions
of aj happened.

ii. if j > i and aj is executed before b ends, then (i) no rolling
takes place:

t0 + ϵ ≤ tj < ti + di → ai ≤ 1 ∧ aj ≤ 1,

104 SPP in Numeric Temporal Planning

and (ii) aj has to maintain the preconditions of b⊢⊣, i.e., for
each v = ⊥, w = ⊤, ψ ⊵ 0 in pre(b⊢⊣):

t0 + ϵ ≤ tj < ti + di → ¬σj(v) ∧ σj(w) ∧ σj(ψ)⊵ 0.

Example (cont’d). For pr⊢i,j (resp. nc⊢k), let t⊢i,j (resp. t⊢k) be the associated
time variable, and analogously for the ending actions. If we further assume
that when executed, the durations di,j and dk of pri,j and nck are 1 and 5
respectively, the temporal pattern encoding entails:

nc⊢k = 0→ dk = 0,nc⊢k = 1→ dk = 5,pr⊢i,j = di,j,

nc⊢k = nc⊣k , pr⊢i,j = pr⊣i,j, ¬(t⊢i,j ≤ t⊣i < t⊢i,j + di,j),

pr⊢i,j > 0 ∧ nc⊢i = 1→ t⊢i,j ≥ t⊢i + ϵ.

The formulas in the 3 lines respectively say that (i) uncapping a bottle takes 5s
and pouring p litres takes p seconds, (ii) any started durative action has to be
ended and it is not possible to cap a bottle while pouring from it, and (iii) we
can start pouring from a bottle after ϵ time since we uncapped it. Similar facts
hold for the destination bottles.

4.3.5 Correctness and Completeness Results

Let ≺ = a1; a2; . . . ; ak, k ≥ 0, be a pattern. Though the pattern ≺ can
correspond to any sequence of starting/ending actions of a durative action
in A, it is clear that it is pointless to have (i) an ending action b⊣ without the
starting action b⊢ before b⊣ in ≺; similarly (ii) a starting action b⊢ which is
not followed by the ending action b⊣, and (iii) two consecutive occurrences
of the same starting (ending) action in the pattern. In such cases, the pattern
can be safely simplified by eliminating such actions. On the other hand, it
makes sense to consider patterns with non consecutive occurrences of the
same starting/ending action. Assuming b1 and b2 are two durative actions
with b⊢1/b

⊣
1 mutex with b⊢2 , it might be useful to have a pattern including

b⊢1 ; b
⊣
1 ; b
⊢
2 ; b
⊢
1 ; b
⊣
1 to allow two executions of b1, or b1 to start/end before/after b2

starts. No matter how ≺ is defined, the ≺-encoding Π≺ of Π (with bound 1)
is correct, where

Π≺ = I(X) ∧ T≺s (X ,A≺,X ′) ∧ T≺t (A≺, T ≺) ∧G(X ′), (4.2)

4.3 Temporal Numeric Planning with Patterns 105

in which I(X) and G(X ′) are formulas encoding the initial state and the
goal conditions. To any model µ of Π≺ we associate the valid temporal plan
π whose durative actions are started by the actions ai in ≺ with µ(ai) > 0.
Specifically, if ai = b⊢, in π we have µ(ai) consecutive executions of b, i.e., one
timed durative actions ⟨t, ⟨b⊢, b⊢⊣, b⊣, d⟩⟩ for each value of p ∈ [0, µ(ai)). The
(p+ 1)-th execution of b happens at the time t and has duration d such that

t = µ(ti) + p× (d+ ϵb), (d+ ϵb)× µ(ai) = µ(di) + ϵb.

Completeness is guaranteed once we ensure that the sequence π� of the
starting/ending actions of a valid temporal plan π, listed according to their
execution times, is a subsequence of the pattern used in the encoding. This
can be achieved by starting with a complete pattern, and then repeatedly
chaining it till Π≺ becomes satisfiable. Formally, a pattern ≺ is complete if
for each durative action b ∈ A, b⊢ and b⊣ occur in ≺. Then, we define ≺n to
be the sequence of actions obtained concatenating ≺ for n ≥ 1 times. Finally,
Π≺n is the pattern ≺-encoding of Π with bound n, obtained from (4.2) by
considering ≺n as the pattern ≺.

Theorem 4.2. Let Π be a temporal numeric planning problem. Let ≺ be a
pattern. Any model of Π≺ corresponds to a valid temporal plan of Π (correctness).
If Π admits a valid temporal plan and ≺ is complete, then for some n ≥ 0, Π≺n is
satisfiable (completeness).

Proof (hint). Correctness: Let µ be a model of Π≺ and π its associated plan.
The ϵ-separation axioms ensure that the relative order between mutex actions
in π and in ≺ is the same. The pattern state encoding ensures that executing
sequentially the actions in π starting from I leads to a goal state. The axioms
in the pattern time encoding are a logical formulation of the corresponding
properties for the validity of π. Completeness: Let π be a valid temporal plan
with n durative actions. Let ≺π be the pattern consisting of the starting and
ending actions in π listed according to their execution times. The formula
Π≺π is satisfied by the model µ whose associated plan is π. For any complete
pattern ≺, ≺π is a subsequence of ≺2×n and Π≺2×n can be satisfied by extending
µ to assign 0 to all the action variables not in ≺π.

106 SPP in Numeric Temporal Planning

Coverage (%) Time (s) Bound (Common)
Domain PATTYT ANMLSMT ITSAT LPG OPTIC TFD PATTYT ANMLSMT ITSAT LPG OPTIC TFD PATTYT ANMLSMT ITSAT

Temporal 9 4 2 1 4 0 6 1 0 0 3 0 10 0 0
CUSHING 100.0 30.0 - - 100.0 10.0 1.70 235.35 - - 3.12 270.02 3.00 11.33 -
POUR 95.0 5.0 - - - - 46.51 285.96 - - - - 2.00 15.00 -
SHAKE 100.0 50.0 - - - - 1.11 155.15 - - - - 2.00 9.50 -
PACK 60.0 5.0 - - - - 154.72 285.00 - - - - 1.00 6.00 -
BOTTLES 10.0 5.0 - - - - 284.28 286.36 - - - - 7.00 18.00 -
MAJSP 85.0 50.0 - - - - 90.54 154.02 - - - - 8.40 15.00 -
MATCHAC 100.0 100.0 100.0 - 100.0 - 2.20 0.46 0.71 - 0.01 - 3.85 10.00 4.00
MATCHMS 100.0 100.0 100.0 - 100.0 - 1.22 0.43 0.68 - 0.01 - 3.60 10.00 4.00
OVERSUB 100.0 100.0 - 100.0 100.0 - 1.02 0.05 - 0.08 0.01 - 1.00 4.00 -
PAINTER 35.0 45.0 - - 10.0 - 211.69 194.67 - - 270.03 - 2.40 16.80 -

Table 4.1 Comparative analysis between our planner PATTYT, the logic-based
solvers ANMLSMT, ITSAT and the search-based solvers LPG, OPTIC and TFD.
A “-" means that the planner cannot parse the problems in the domain. Best
results are in bold.

Notice that when two actions a and a′ are not in mutex and one is not the
starting/ending action of the other, the pattern does not lead to an ordering
on their execution times. For this reason, we may find a valid plan π for Π
even before ≺n becomes a supersequence of π�, π� defined as above.

Example (cont’d). Assume all q ≥ 2× p bottles are initially capped and that
the bottles in [1, p] contain < dk = 5 litres. Then, Π≺ is satisfiable and a valid
plan is found with one call to the SMT solver. Notice that in the pattern (4.1),
the ending action pr⊣i,j of the pouring actions are after the ending action nc⊣k
that caps the bottle. However, such two actions are not in mutex and our pattern
time encoding does not enforce t⊣i,j > t⊣k , making it possible to solve the problem
with a bound n = 1. On the other hand, if one bottle contains 5 litres, Π≺

is unsatisfiable because of ϵ-separation between the actions of uncapping and
pouring from it, making it impossible to pour 5 times before the bottle is capped
again. This problem is solved having ≺n with n = 2. More complex scenarios
may require ≺n with higher values for n.

4.4 Experimental Results

Table 4.1 presents the experimental analysis on the CUSHING domain (the
only domain with required concurrency in the last International Planning
Competition (IPC) with a temporal track [Coles et al., 2018]), all the domains
and problems presented in [Panjkovic and Micheli, 2023] (last five), and
four new domains covering different types of required concurrency specified

4.4 Experimental Results 107

in [Cushing et al., 2007]. The first new domain, POUR, is similar to the
motivating example of this chapter. SHAKE allows emptying a bottle by
shaking it while uncapped. PACK calls for concurrently pairing two bottles
together to be packed. The domain BOTTLESALL puts together all the actions
and characteristics of the three aforementioned domains. Of these 10 domains,
only POUR and BOTTLESALL, contain actions eligible for rolling.

The analysis compares our system PATTYT implemented by modifying the
planner PATTY and using the SMT-solver Z3 v4.8.7 [de Moura and Bjørner,
2008]; the symbolic planners ANMLSMT (which corresponds to ANMLOMT

INC

(OMSAT) in [Panjkovic and Micheli, 2023]) and ITSAT [Rankooh and Ghassem-
Sani, 2015]; and the search-based planners OPTIC [Benton et al., 2012], LPG
[Gerevini et al., 2010] and TEMPORALFASTDOWNWARD (TFD) [Eyerich et al.,
2012]. ANMLSMT and OPTIC have been set in order to return the first valid
plan they find. To use ANMLSMT, we manually converted the domains in PDDL

2.1 to the ANML language [Smith et al., 2008]. The experiments have been
run using the same settings used in the Numeric/Agile Track of the last IPC,
with 20 problems per domain and a time limit of 5 minutes. Analyses have
been run on an Intel Xeon Platinum 8000 3.1GHz with 8 GB of RAM. In the
sub-tables/columns, we show: the percentage of solved instances (Coverage);
the average time to find a solution, counting the time limit when the solution
could not be found (Time); the average bound at which the solutions were
found, computed on the problems solved by all the symbolic planners able to
solve at least one problem in the domain (Bound). The value of the bound
coincides with the number of calls to the SMT solver. Each pattern ≺ has been
initially computed using the Asymptotic Relaxed Planning Graph, introduced
in [Scala et al., 2016b].

From the table, as expected, PATTYT finds a solution with a bound always
lower than the ones needed by the other symbolic planners. This allows
PATTYT to have the highest coverage in 9 out of 10 domains (compared to the
value of 4 for the second best). The Painter domain is the only one where
PATTYT has lower coverage than ANMLSMT. ANMLSMT is a symbolic planner
exploiting the standard encoding. Although it requires a higher bound to find
a valid plan also in Painter, ANMLSMT encoding has 2490 mostly Boolean
variables (action and most state variables are Boolean), while our encoding
has 2058 mostly numeric variables (the only Boolean variables are in X and

108 SPP in Numeric Temporal Planning

X ′). In the other domains, the ratio between the number of variables used by
ANMLSMT and PATTYT is 0.16 on average, which provides an explanation of
PATTYT’s highest coverage and better performance on 9/10 and 6/10 domains,
respectively. Overall, PATTYT is able to solve 157 out of the 200 considered
problems, compared to the 98 of the second best.

4.5 Conclusion

We extended the SPP approach proposed in Chapter 2 to the temporal numeric
setting. We proved its correctness and completeness. We experimentally
showed the benefits of our encoding on various domains with required con-
currency. As expected, all the problems have been solved by PATTYT with a
bound lower than the one needed by the other planners based on planning
as satisfiability. Indeed, it is well known that the main issue of planning
as satisfiability is the value of the bound: the higher the bound, the more
calls to the solver. Furthermore, the number of variables and the encoding
size increase with the bound, making problems more difficult as the bound
increases. For these reasons, much of the work, even in the classical setting,
has focused on defining encodings that allow to find valid plans with a lower
value for the bound, see, e.g., [Kautz et al., 1996; Rintanen, 2007; Wehrle
and Rintanen, 2007; Rankooh and Ghassem-Sani, 2015; Scala et al., 2016d;
Cardellini et al., 2024b]. This is the first work following this line of research
in the temporal numeric setting.

Chapter 5

Boosting SPP with Symbolic Search

In this chapter, we push the envelope of planning with patterns, and show
how to symbolically search for a valid plan by iteratively extending (adding
actions to) and simplifying (removing actions from) the initially computed
pattern. Specifically, the idea is to concatenate

1. an initial, simplified pattern that allows reaching a state s satisfying a
subset of the goals, and

2. another pattern computed from s, which is extended until another state
satisfying some new subgoals can be reached.

At the beginning, the initial pattern is computed from the initial state, and
the two steps are iterated until all the subgoals have been satisfied, at which
point a valid plan is returned. The proposed procedure is proven correct
(any returned plan is valid) and complete (if there exists a valid plan, one
will be returned). On the experimental side, the analysis shows that the
proposed procedure outperforms both the previous SPP approach and all
the other publicly available planners on the domains and problems of the
2023 International Planning Competition (IPC). In particular, our procedure,
compared to the original SPP approach, can solve more problems (i.e., it has
higher coverage) on 6 out of the 10 domains whose problems were not already
all solved. Considering all the other publicly available numeric planners, our
procedure achieves the highest coverage on 14/19 of the domains, compared
to 9/19 for the second-highest one. Ablation studies reveal that simplifying
the initial pattern by removing actions that are not necessary to reach the

110 Boosting SPP with Symbolic Search

state where the pattern is recomputed has the most significant impact on the
performance of our procedure.

Summing up, the main contributions of the chapter are:

1. We present a SPP search-based procedure for numeric planning.

2. We prove its correctness and completeness.

3. We show that it outperforms all the publicly available planners on the
benchmarks of the 2023 IPC.

4. We conduct ablation studies to highlight which technique is most effec-
tive.

After the background on planning as satisfiability with patterns, a simple
motivating example illustrates the drawbacks of the original SPP approach,
followed by our procedure, its behaviour on the motivating example, and the
experimental analysis.

5.1 Motivating Example

In a relay race, there are N + 1, N > 0, runners r0, r1, . . . , rN running on a
linear track (an x axis) of length (N + 1)× L with L ≥ 1, passing a baton to
each other. The position xi of runner ri ranges in [L × i, L × (i + 1)], with
i ∈ [0, N]. Each runner can run forward or backward, increasing or decreasing
its position by 1, only if it is holding the baton. To exchange the baton, two
runners ri and ri+1 must be in the same position. We assume that bi = 1 if ri
has the baton and bi = 0 otherwise,1 while btdi is a Boolean variable denoting
if ri has touched the baton. In all the problems in this domain, we assume that
initially the runner r0 has the baton, that he is the only one who has touched
the baton and that each runner ri has position L× i. In this scenario, for each
i ∈ [0, N] and j ∈ [1, N], we have the actions fw i, bw i and bxcj modelling
respectively the running forward and backward of ri, and the baton exchange

1We use bi ∈ {0, 1} instead of a Boolean variable to allow for a concise modelling of the
baton exchange action.

5.1 Motivating Example 111

between rj−1 and rj, where

fw i : ⟨{xi < L× (i+ 1), bi > 0}, {xi += 1}⟩,
bw i : ⟨{xi > L× i, bi > 0}, {xi −= 1}⟩,
bxcj : ⟨{xj = xj−1, bj + bj−1 > 0},

{bj := bj−1, bj−1 := bj, btdj := ⊤}⟩.

Assume the pattern ≺, using the ARPG construction from the initial state,
is

≺ = fw 0; bw 0; bxc1; fw1; bw 1; . . . ; bxcN ; fwN ; bwN .

Then, in the ≺-encoding of Π, pre≺(A) contains, for the actions fw 0, bw 0 and
bxc1, formulas entailing

fw 0 > 0→ (x0 < L) ∧ (b0 > 0),

fw 0 > 1→ (x0 + (fw 0 − 1) < L),

bw 0 > 0→ (x0 + fw 0 > 0) ∧ (b0 > 0),

bw 0 > 1→ (x0 + fw 0 − (bw 0 − 1) > 0),

bxc1 > 0→ (x0 + rt0 − lf 0 = x1) ∧ (b1 + b0 > 0),

and likewise for all other actions in ≺. For each j ∈ [1, N], the action bxcj is
not eligible for rolling, and thus

bxcj = 0 ∨ bxcj = 1,

belongs to amo≺(A). Finally, the frame axioms in frame≺(VB ∪ VN), for each
i ∈ [0, N] and j ∈ [1, N] are:

x′i = xi + fw i − bw i, btd′0 = btd0, btd′j = btdj ∨ bxcj,

b′j = ITE(bxcj > 0, ITE(bxcj−1 > 0, ITE(. . .), bj−1), bj).

As the frame axioms make clear, the ≺-encoding allows in a single state
transition (i) the multiple consecutive execution of the same action, as in the
rolled-up encoding Scala et al. [2016d], and (ii) the combination of multiple
even contradictory effects on a same variable by different actions, as in the
R2∃ encoding Bofill et al. [2016].

112 Boosting SPP with Symbolic Search

Assuming the goal is that all the runners have to touch the baton, then
the ≺-encoding of Π with n = 1, is satisfiable. However, if the goal also
includes returning the baton to the initial runner r0, the ≺-encoding of Π
requires a bound n = N +1. This is because returning the baton from rN to r0
necessitates a plan where bxcj is executed before bxcj−1 for j ∈ [1, N], while
their order in the pattern ≺ is the opposite. The fact that the defined pattern
≺ leads to negative results is not surprising: any simple single pattern is likely
to offer limited guidance when the problem demands the non-consecutive
execution of the same action multiple times.

5.2 Pushing Numeric Pattern Planning

Consider a numeric planning problem Π. The issue highlighted by the motivat-
ing example arises because (i) a simple and complete pattern ≺ is computed
only once starting from the initial state, and (ii) then exploited at every step
i ∈ [0, n− 1] in the ≺-encoding of Π with bound n (the formula Π≺n), without
considering that:

1. A not empty subset P of the set G of subgoals may have been already
satisfied at a step i < n.

2. To satisfy the remaining subgoals in G \ P , it may be (far) better to use
a pattern entirely different from the one used to satisfy the subgoals in
P .

3. To facilitate the solution of the SMT formula, it may be better to discard
the actions in the steps < i that are useless for satisfying the goals in P .

Assuming π is a valid plan, the objective is to find the smallest possible pattern
≺ covering π. Ideally, ≺ should be the pattern of π. A pattern ≺ covers a
plan π if ≺ is a supersequence of the pattern of π. A sequence of actions ≺
is the pattern of a plan π if ≺ is obtained from π by replacing consecutive
occurrences of each action a eligible for rolling with a single instance of a.
If a pattern ≺ covers a valid plan, the formula Π≺1 , representing the pattern
≺-encoding of Π with bound n = 1, is satisfiable.

5.2 Pushing Numeric Pattern Planning 113

Theorem 5.1. Let Π be a numeric planning problem. Let ≺ be a pattern covering
a valid plan. Π≺1 is satisfiable.

Proof (hint). Three steps. First, considering π as a pattern, the pattern π-
encoding of Π with bound n = 1 (Ππ

1) is satisfiable. Then, if ≺π is the
pattern of π, Π≺π

1 is satisfiable. Finally, if ≺ is a supersequence of ≺π, Π≺1 is
satisfiable.

Of course, we cannot directly exploit the above theorem to find a pattern
covering a valid plan. In practice, with ARPG or, more in general, with any
ordering on the set A of actions, we just have a simple and complete pattern
computed from a given initial state. Such pattern can be arbitrarily extended,
but, for effectiveness, this needs to be done with some care, since

1. different patterns, even when one is a permutation of the other, cover
different plans, and

2. each newly introduced action in the pattern adds another variable to
the encoding, thereby increasing the search space of the SMT solver.

We now show how to symbolically search for a valid plan by iteratively
extending and simplifying the initial pattern. The final procedure, called
PATTYF, incorporates three ideas:

1. With patterns, in the formula of Eq. 1.2 it is not necessary to duplicate
n-times the symbolic transition relation: Given the initially computed
pattern ≺h and a pattern ≺g initially set of ≺h, we can iterate the
procedure of concatenating ≺h to ≺g till ≺g covers a valid plan, i.e.,
allows reaching a state in which all the subgoals in G are satisfied.

2. In the above outlined procedure, it is not necessary to keep the same
≺h at each iteration: Given a pattern ≺g allowing us to reach a state s
satisfying a strict subset P of the subgoals in G, we can (i) dynamically
recompute the pattern ≺h whenever we reach a state s satisfying > |P |
subgoals, and then (ii) iterate the procedure, exiting when all the
subgoals in G are satisfied.

3. In the above outlined procedure, ≺g allows us to compute a plan π

leading to the state s from which ≺h is recomputed: We can exploit the

114 Boosting SPP with Symbolic Search

plan π and use the pattern of π instead of ≺g, thereby eliminating the
actions in ≺g which are not necessary to reach the state s.

In the following three subsections, we present procedures that exploit the
three aforementioned ideas. This allows us to formally state their correctness
and completeness. Additionally, the first two procedures correspond to abla-
tion studies of the third, which incorporates all three ideas. The correctness
and completeness of the procedures rely on the following theorem. A pattern
≺ is n-complete if≺ is a supersequence of a pattern obtained by concatenating
n simple and complete patterns.

Theorem 5.2. Let Π be a numeric planning problem having a valid plan of
length n. Let ≺ be a n-complete pattern. Π≺1 is satisfiable.

Proof (hint). A plan π of length n is a supersequence of the pattern of π and
is a subsequence of any n-complete pattern. Thus, ≺ covers π and the thesis
follows by Thm. 5.1.

Given that we are going to present procedures that extend the pattern ≺
while keeping n = 1 in the formula in Eq. 1.2, we will simply refer to Π≺1 , X0,
A≺0 and X1 as Π≺, X , A≺ and X ′, respectively.

5.2.1 Concatenating Patterns

Algorithm 5.1 shows the pseudocode for PATTYG, the version of PATTY that in-
corporates the idea of iteratively concatenating the initially computed pattern,
as already presented in Chapter 2. In PATTYG:

1. COMPUTEPATTERN(s, A,G) returns a simple and complete pattern, that
in practice we compute using the ARPG construction starting from the
state s = I. The goal G is passed as a parameter because the ARPG

construction can sometimes immediately reveal that the problem Π is
not solvable, i.e., that G is not reachable from state s (see Scala et al.
[2016b]). To simplify the algorithm, we omit the check for this case.

2. SOLVE(Π≺g) calls an SMT solver which returns a model of the given
formula if it is satisfiable, and 0 otherwise.

5.2 Pushing Numeric Pattern Planning 115

Algorithm 5.1 PATTYG algorithm. Input: a numeric planning problem Π =
⟨VB, VN , A, I, G⟩. Output: a valid plan for Π.

1: function PATTYG(Π)
2: ≺g ← COMPUTEPATTERN(I, A,G)
3: ≺h ← ≺g
4: while (TRUE) do
5: Π≺g ← I(X) ∧ T ≺g(X ,A≺g ,X ′) ∧ G(X ′)
6: µ← SOLVE(Π≺g)
7: if (µ ̸= 0) then return GETPLAN(µ,≺g)
8: end if
9: ≺g ← ≺g;≺h

10: end while
11: end function

3. GETPLAN(µ,≺g) returns the sequence of actions ordered as in ≺g, each
action ai repeated µ(ai) times.

In PATTYG, the pattern ≺h is computed only once in the initial state I and
we start considering the pattern ≺g equal to ≺h. At Line 6 we check for
satisfiability of the formula Π≺g , i.e., we check if G can be satisfied considering
≺g. If no model is returned, i.e., if Π≺g is not satisfiable, we skip to Line 9,
and we concatenate ≺h to ≺g and we start again from Line 5. The pattern
≺g is continuously extended, each time concatenating ≺h to it. By Thm. 5.2,
if a valid plan of length n exists, we are guaranteed to find it after at most
n iterations and calls to SOLVE(Π≺g). Once a satisfiable model µ is found, a
valid plan is returned at Line 7.

For any numeric planning problem Π, PATTYG(Π) is correct (any returned
plan is valid) and complete (if a valid plan exists, PATTYG(Π) will return one).

Theorem 5.3. Let Π be a numeric planning problem. PATTYG(Π) is correct and
complete.

Proof (hint). Correctness follows from Thm. 2.3 and completeness from
Thm. 5.2: a valid plan of length n is found by the n-th iteration, when
≺g becomes n-complete.

116 Boosting SPP with Symbolic Search

Algorithm 5.2 PATTYH and PATTYF algorithms. PATTYH (resp. PATTYF) in-
cludes Line 10 (resp. Line 11) and not Line 11 (resp. Line 10). Input: a
numeric planning problem Π = ⟨VB, VN , A, I, G⟩. Output: a valid plan for Π.
1: function PATTYH(Π)/PATTYF(Π)
2: ≺g ← ϵ, P ← ∅
3: ≺h ← COMPUTEPATTERN(I, A,G)
4: while (TRUE) do
5: ≺f ← ≺g;≺h
6: µ← MAXSOLVE(I(X) ∧ T ≺f (X,A≺f ,X ′), G)
7: if (|SATG(µ,G)| = |G|) then
8: return GETPLAN(µ,≺f)
9: else if (|SATG(µ,G)| > |P |) then

10: ≺g ← ≺f // if PATTYH
11: ≺g ← SIMPLIFY(GETPLAN(µ,≺f)) // if PATTYF
12: P ← SATG(µ,G)
13: s← GETSTATE(s,GETPLAN(µ,≺f))
14: ≺h ← COMPUTEPATTERN(s,A,G)
15: else
16: ≺g ← ≺f
17: end if
18: end while
19: end function

5.2.2 Changing the Pattern During the Search

As the example makes clear, having a single pattern may have a dramatic
impact on the number of iterations and calls to the SMT solver. In our example,
the pattern computed from the initial state allows finding a plan satisfying
|G− 1| out of the |G| subgoals in the first iteration, but we struggle to satisfy
the last subgoal: once the baton is being held by rN , any pattern (even a
random one) would allow finding a plan for delivering the baton back to r0 in
a number of iterations ≤ N . Algorithm 5.2 shows the pseudocode for PATTYH,
the version of PATTY that incorporates the idea to dynamically update the
pattern by recomputing it whenever new subgoals are achieved. In PATTYH,

1. MAXSOLVE(I(X)∧T ≺f (X,A≺f ,X ′), G) calls a MAX-SMT solver returning
an assignment satisfying I(X) ∧ T ≺f (X,A≺f ,X ′) and the maximum
number of subgoals in G.2

2Notice that I(X) ∧ T ≺f (X,A≺f ,X ′) is by construction satisfied, e.g., by the assignment
setting all the action variables to 0.

5.2 Pushing Numeric Pattern Planning 117

2. GETSTATE(s, π) returns the state resulting from the execution of the
sequence π of actions in state s.

3. SATG(µ,G) returns the set of subgoals in G satisfied by the assignment
µ.

In PATTYH, before the search starts, we assign ≺g to the empty pattern, the
set P (meant to contain the subset of subgoals that can be satisfied with ≺g)
to the empty set, and we compute an initial pattern ≺h from the initial state.
Then,

1. we set the pattern ≺f used for the search to ≺g;≺h (Line 5) and then
check whether all the subgoals in G are satisfied (Line 7) and,

2. if not, we check whether ≺f allows satisfying at least one more subgoal
(Line 9), in which case we (i) set ≺g to ≺f , (ii) update the set P to the
new subset of satisfied subgoals, (iii) recompute the pattern ≺h consid-
ering s as initial state, and (iv) restart the loop thereby concatenating
the newly computed ≺h at the next iteration,

3. otherwise, (Line 16) we set ≺g to ≺f , thereby concatenating ≺h once
more at the next iteration.

For any numeric planning problem Π, PATTYH(Π) is correct and complete.

Theorem 5.4. Let Π be a numeric planning problem. PATTYH(Π) is correct and
complete.

Proof (hint). Correctness follows from Thm. 2.3. Completeness follows from
Thm. 5.2: at each iteration, a complete pattern is concatenated to ≺f and a
valid plan of length n is found at most at the n-th iteration, since at that point
≺f is n-complete and all the subgoals in G can be satisfied.

5.2.3 Simplifying the Pattern During the Search

In our example, though PATTYH can find a valid plan with just two iterations,
it is still possible to further optimize it by simplifying the pattern ≺f that led
to the state s in which a new subgoal has been satisfied. Indeed, we can

118 Boosting SPP with Symbolic Search

Coverage (%) Time (s) n - Calls to SMT solver |X ∪ A≺ ∪ X ′| |T ≺(X ,A≺,X ′)|
Domain PO PG PH PF PO PG PH PF PO PG PH PF PO PG PH PF PO PG PH PF
BLGRP (S) 100 100 100 100 1.6 1.6 1.8 1.8 1.0 1.0 1.0 1.0 182 182 182 182 448 448 448 448
CNT (S) 100 100 100 100 0.9 0.9 0.9 0.9 1.0 1.0 1.0 1.0 92 92 92 92 228 228 228 228
CNT (L) 100 100 100 100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 96 96 96 96 202 202 202 202
DEL (S) 15 15 25 40 255.6 255.6 241.8 191.1 3.3 3.3 3.3 3.3 1082 809 809 507 3277 2946 2946 1736
DRN (S) 15 15 15 80 255.3 255.3 255.3 81.9 5.7 5.7 5.7 8.3 301 137 137 95 778 322 322 194
EXP (S) 15 15 15 15 262.0 262.0 267.3 266.7 7.7 7.7 8.0 8.3 778 420 434 410 1814 1333 1383 1299
FARM (S) 100 100 100 100 0.9 0.9 0.9 0.9 1.0 1.0 1.0 1.0 50 50 50 50 107 107 107 107
FARM (L) 100 100 100 100 6.2 5.4 2.1 2.0 1.0 1.0 1.0 1.0 64 64 64 64 129 129 129 129
HPWR (S) 100 100 100 100 11.6 12.2 12.0 12.1 1.0 1.0 1.0 1.0 352 352 352 352 725 725 725 725
MPRIME (S) 50 50 50 50 154.8 155.8 155.5 157.1 2.0 2.0 2.0 2.2 1570 1318 1318 1320 4916 4645 4645 4652
PATHM (S) 100 100 100 100 6.1 6.2 6.5 6.5 1.0 1.0 1.0 1.0 3079 3079 3079 3079 4834 4834 4834 4834
PLWAT (S) 30 30 30 100 220.2 224.0 224.4 10.2 8.2 8.2 8.3 10.7 623 343 348 237 1718 915 931 598
RVR (S) 50 55 50 65 156.1 150.3 165.3 143.6 2.1 2.1 2.3 3.1 1008 562 651 499 2251 1847 2198 1597
SAT (S) 25 30 25 35 250.7 242.1 235.4 209.0 2.8 2.8 2.5 3.2 2061 1441 1332 790 5761 4644 4242 2187
SAIL (S) 100 100 100 100 1.1 1.1 1.3 0.9 3.3 3.3 3.3 3.3 163 117 117 72 340 254 254 134
SAIL (L) 95 95 100 100 22.2 21.1 4.5 1.8 1.5 1.5 1.5 1.5 72 65 65 61 178 165 165 151
SGR (S) 100 100 100 100 9.4 8.8 9.5 6.1 3.1 3.1 3.2 4.0 1401 920 931 725 3465 2792 2830 2101
TPP (L) 10 10 10 10 270.5 272.7 270.4 270.1 2.5 2.5 2.0 2.0 452 288 251 196 1052 703 588 408
ZENO (S) 55 55 55 55 137.3 138.4 138.2 136.6 1.6 1.6 1.6 1.7 603 515 515 376 1855 1707 1707 1147
Total 13 13 14 19 8 5 3 14 17 17 15 11 7 8 8 18 7 8 8 18

Table 5.1 Comparative analysis between PATTYO, PATTYG, PATTYH and PATTYF.
The labels (S) and (L) indicate if the numeric planning task is Simple or
Linear, according to the IPC definition.

exploit the plan π that led to such state s and use the pattern of π. The pattern
of π will be a subsequence of ≺f and thus it may not allow reaching all the
states that are reachable with ≺f . On the other hand, by reducing the number
of variables in the encoding, the task of the SMT solver becomes easier.

Algorithm 5.2 shows the pseudocode for PATTYF, the version of PATTY,
that incorporates the idea of simplifying the pattern. In this case, we have at
Line 11 that ≺g assumes the value of SIMPLIFY(π), with π = GETPLAN(µ,≺f).
SIMPLIFY(π) returns the pattern of π. We call PATTYF this version of PATTY, to
reflect the intuition that the pattern construction relies on the subgoals in G,
with its initial part allowing to reach (just) the state in which the new pattern
is computed. For any numeric planning problem Π, PATTYF(Π) is correct and
complete.

Theorem 5.5. Let Π be a numeric planning problem. PATTYF(Π) is correct and
complete.

Proof (hint). Correctness follows from Thm. 2.3. For completeness, consider
a valid plan of length n. Each time Line 16 is executed, the last computed
complete pattern ≺h is concatenated to ≺f at Line 5, while each time Line 11
is executed≺f is simplified. However, Line 11 can be executed at most (|G|−1)
times, each time after at most (n − 1) iterations between two consecutive
executions. Thus, a valid plan will be found at most at the p+ n-th iteration,
where in the worst case p = (|G| − 1)× (n− 1).

5.3 PATTYF Behaviour on the Motivating Example 119

5.3 PATTYF Behaviour on the Motivating Example

Consider the problem Π in the motivating example in which the baton has
to return to the hands of runner r0, and assume COMPUTEPATTERN(I, A,G)

returns the pattern:

≺h = fw 0; bw 0; bxc1; fw1; bw 1; . . . ; bxcN ; fwN ; bwN .

PATTYG at each iteration i ∈ [1, N] extends the initial pattern ≺g by consid-
ering ≺g = ≺h;≺ih in which ≺ih denotes the pattern ≺h concatenated i times.
When i = N , ≺ih is N -complete, ≺Nh covers the plan for returning the baton
from rN+1 back to r0, and Π≺g is satisfiable.

PATTYH starts with ≺f = ≺h and at the first iteration it will satisfy the
subgoals of having the baton touched by all runners by reaching a state s
satisfying, for each i ∈ [0, N), xi = L × (i + 1), xN ∈ [L × N,L × (N + 1)],
b0 = . . . = bN−1 = 0, bN = 1 and btd0 = . . . = btdN = 1. Assuming that
s(xN) = L× (N + 1), the new pattern ≺′h computed from s is:

≺′h = bwN ; bxcN ; fwN ; . . . ; bw 1; bxc1; fw 1; bw 0; fw 0,

and PATTYH will find a valid plan with ≺f = ≺h;≺′h.

PATTYF starts with ≺f = ≺h as PATTYH. Differently from PATTYH, it will
compute the pattern ≺π of the plan π that led to the state s in which ≺′h was
computed, i.e.,

≺π = fw 0; bxc1; fw 1; . . . ; bxcN ; fwN

and PATTYF will find a valid plan with ≺f = ≺π;≺′h.

Every pattern computed by COMPUTEPATTERN(s, A,G) contains 3N + 2

actions, and PATTYG, PATTYH and PATTYF are able to find a valid plan when
considering a pattern with N × (3N + 2), 2× (3N + 2) = 6N + 4 and (2N +

1) + (3N + 2) = 5N + 3 actions respectively.

120 Boosting SPP with Symbolic Search

Coverage (%) Time (s)
Domain PF ENHSP FF NFD PF ENHSP FF NFD
BLOCKGROUPING (S) 100 100 10 - 1.8 48.0 270.2 -
COUNTERS (S) 100 100 60 50 1.0 6.9 129.0 149.1
COUNTERS (L) 100 45 40 25 1.0 180.5 180.0 225.4
DELIVERY (S) 40 65 95 45 191.3 121.2 48.5 165.2
DRONE (S) 80 85 10 80 82.5 59.9 270.0 65.4
EXPEDITION (S) 15 10 - 15 267.5 270.3 - 253.7
FARMLAND (S) 100 100 35 75 1.0 0.7 206.8 85.5
FARMLAND (L) 100 75 75 55 2.2 96.8 90.7 151.7
HYDROPOWER (S) 100 10 5 5 12.7 270.4 285.0 285.1
MPRIME (S) 50 85 80 65 155.6 49.7 47.5 133.6
PATHWAYSMETRIC (S) 100 60 50 5 6.5 133.9 154.9 285.0
PLANTWATERING (S) 100 100 10 60 10.2 9.8 276.5 185.2
ROVER (S) 65 35 50 20 128.8 204.5 142.1 241.0
SAILING (S) 100 100 5 50 1.0 1.5 285.0 150.3
SAILING (L) 100 20 40 70 1.9 241.2 182.9 109.4
SATELLITE (S) 35 30 20 20 209.6 222.6 229.4 242.2
SUGAR (S) 100 95 65 25 6.1 23.7 119.9 232.9
TPP (L) 10 20 10 10 270.1 244.3 268.4 270.0
ZENOTRAVEL (S) 55 100 55 45 136.7 20.4 135.0 178.5
Total 14 9 1 1 11 5 2 1

Table 5.2 Comparative analysis of PATTYF and the search based planners
ENHSP, METRICFF and NFD. A “-” means that no problem in the domain
was solved by the planner.

5.4 Experimental Results

For the experiments, we adopted the settings used in Chapter 2, and thus (i)
we considered all 19 domains and 20 problems per domain from that paper,
which included the domains of the 2023 Numeric IPC where at least one
planner solved a problem Taitler et al. [2024]; (ii) we used the settings of
the Agile Track of the IPC, and thus the systems had a time limit of 5 minutes
on an Intel Xeon Platinum 8000 3.1GHz with 8 GB of RAM; and (iii) we used
Z3 v4.8.7 de Moura and Bjørner [2008] for computing the model (if any)
satisfying the given set of SMT assertions (representing the hard constraints of
the encodings) and also the maximum number of soft assertions (representing
the subgoals in PATTYH and PATTYF).

5.4 Experimental Results 121

Table 5.1 compares the original version of PATTY of Chapter 2 (renamed
PATTYO), and PATTYG, PATTYH and PATTYF on the 12 domains for which at
least one problem required more than one call to the SMT solver. Indeed,
on the 7 × 20 problems that were solved using just the initially computed
pattern, (i) there are no differences between PATTYO and PATTYG, and between
PATTYH and PATTYF, and (ii) the possible differences between PATTYO/PATTYG

and PATTYH/PATTYF (due to the latter maximizing the number of satisfied
subgoals) turned out to be almost always insignificant.

In the first three subtables of Table 5.1, we show: the name of the domain
(subtable Domain); the percentage of solved instances (subtable Coverage);
the average time to find a solution, counting the time limit when the solution
could not be found (subtable Time). In the last three subtables, we considered
only the problems solved by all the planners and show the average number n
of calls to the SMT solver (subtable n - Calls to the SMT solver); the number of
variables (subtable |X ∪A≺ ∪X ′|) and assertions (subtable |T (X ∪A≺ ∪X ′)|)
of the encoding when a solution is found.

Looking at the performance results, the first observation is that PATTYF has
by far the best results: on all the domains, PATTYF has the highest coverage,
meaning that it can solve the highest number of problems in each domain.
Further, PATTYF has higher coverage on 6 out of the 10 domains where PATTYO

did not solve all problems. Then, by comparing PATTYF vs PATTYH, and PATTYH

vs PATTYG/PATTYO, the second observation is that the simplification of the
pattern plays a major role in PATTYF positive performance.

Examining the subtable with the number n of calls made to the SMT solver,
we observe that PATTYO and PATTYG yield identical values, while the count for
PATTYH is never greater than that of PATTYF. No strict relationship emerges
when comparing PATTYO/PATTYG with PATTYH and PATTYF. These results align
with the theoretical findings. As expected, the total number of variables and
the total number of assertions utilized in the final call to the SMT solver is
typically lower for PATTYF than for PATTYO/PATTYG/PATTYH, even on domains
in which PATTYF needs more iterations/calls to the SMT solver. The number
of variables and assertions used by PATTYO is always greater than those that
are used by PATTYG, as PATTYO uses state variables representing intermediate
states, along with the corresponding assertions. Conversely, the average

122 Boosting SPP with Symbolic Search

number of variables per assertion is consistently higher for PATTYG than for
PATTYO being 16.9 and 7.3 respectively. Despite these differences, PATTYO

and PATTYG exhibit very similar performance.

Table 5.2 compares PATTYF with the planners that performed better than
PATTYO on at least one domain. Thus, it includes the search-based planners
ENHSP Scala et al. [2016b], METRICFF Hoffmann [2003] and NUMERIC-
FASTDOWNWARD (NFD) Kuroiwa et al. [2022], and does not include the
symbolic planners SPRINGROLL Scala et al. [2016d] and OMTPLAN Leofante
et al. [2020]. We remind that NFD participated and ranked first in the last
IPC. The planner ENHSP has been run three times using the sat-hadd,
sat-aibr and sat-hmrphj settings, and for each domain the best result is
reported. Considering all the planners in Table 5.2, PATTYF has the highest
coverage on 14 domains, compared to the 9 by ENHSP, and 1 for both FF
and NFD. Considering the timings, PATTYF/ENHSP/FF/NFD have the lowest
values on 11/5/2/1 domains, and can solve 290/247/143/144 of the 19× 20

problems we consider, respectively.

Finally, we did some experiments with a 30-minute time-limit, obtaining
the same overall picture.

Chapter 6

Discussion: SPP in Applications
and Hybrid Planning

In this section, we discuss how the SPP approach presented in this thesis
can provide beneficial results when applied to an application domain and
to the hybrid flavour of planning. The application domain considered is the
In-Station Train Dispatching Problem, concerning of planning the movements
of trains inside a railway station. The work presented in this chapter is just a
discussion on the benefits that the SPP approach could bring in this flavour and
application domain. The candidate is currently investigating this approaches
and theoretical and empirical analyses are still ongoing. Still, we wanted to
highlight some preliminary formulation and considerations.

6.1 In-Station Train Dispatching

To characterize the In-Station Train Dispatching (INSTRADI) problem, we
first present the objects characterizing the domain (i.e., stations, trains and
nominal timetable), then what is a (valid) station state and how commands
can be used to evolve the state of the station. Next, we present the concept
of dispatchment, i.e. a timed sequence of commands’ sets, denoting (valid)
transitions between (valid) station states. Afterward, we will introduce
the notion of a forecast, i.e., an estimator of the arrival of the trains at
the station, their running and stop times. Employing the forecast, we will

124 Discussion: SPP in Applications and Hybrid Planning

define the concept of a forecasted dispatchment, i.e., a dispatchment that
follows the timings estimated in the forecast. Finally, we will discuss when
a valid and forecasted dispatchment can be considered a solution to the
INSTRADI problem. For each of these concepts, we will firstly provide an
intuitive description followed by a more formal characterization, helpful in
guaranteeing the correctness and completeness of the approach.

6.1.1 Stations, Trains and Nominal Timetable

Station A station, as exemplified in Figure 6.1, is composed of signals, track
circuits, platforms and switches. A signal is a visual display device that gives
instructions to the driver of a train on whether to stop or proceed in its path.
A driver can stop in the station only in the proximity of a signal. Signals
are physically placed near track circuits and are oriented with respect to
them. Figure 6.1 shows a station with 17 signals, the orientation of the signal
is depicted by the direction of the red and green colors. Track circuits are
the smallest logical units forming rails. Usually, track circuits are hundreds
of meters long and allow for the detection of a train moving on top of
them.1 In Figure 6.1, track circuits are represented by segments ended by two
perpendicular small lines, see, e.g., the track circuit 101 in the bottom-left
part of the Figure. A platform is a set of track circuits in which trains can
stop to embark/disembark passengers or load/unload goods. A platform is
delimited by two signals, called left and right, both oriented towards each
other, instructing the driver when to start/leave from the platform when
departing towards the right or the left of the platform (looking at the station
schema like the one in Figure 6.1), respectively.2 In Figure 6.1, the platform
II is composed of the track circuits 114, 115, 116 and is delimited by signals
22 and 42. Switches are mechanical components that allow trains to deviate
their movement towards another track circuit. In the bottom-left of Figure 6.1,
for example, the switch d1 allows moving from the track circuit 102 to either
the track circuits 111 or 103. A switch has two states: through and diverge.

1The name “circuit" comes from the fact that each rail is connected to a pole of a battery
and a relay. When a train moves on top of a track circuit, its axles close the circuit and make
current flow through the relay, signalling the presence of the train.

2Of course, for terminal platforms, the signal corresponding to the blocked direction is
always red.

6.1 In-Station Train Dispatching 125

d1

d1

d2

d2

d3

d4

d4 d5

d5

d6

d6

d8d7

d8d7

d9

d9

d10

d10

d3

II

III

IV

I

02 21 41

42

43

44

91

92

03

04

05

06

2201

09
23

24

101 102 103 104 105 106 107 108 109

120119118117116115114113112111

122121 123 124 125 126 127

133132131130129128

110

d1

d2

d2

d4
III

112111

122

110

Fig. 6.1 A schema of a railway station with 4 platforms, 4 entry points and 4
exit points. Signals are oriented based on the direction of the red and green
colors. The route 01-43 is highlighted in green.

When a train is arriving from 101 and moves in 102, the train will move
to 103 if the switch is in the through state or to 111 if the switch is in the
diverge state. Switches are directional and in the figure, the direction of each
switch is given by their associated angle, and the movement associated with
the diverge state can happen only when it is acute regarding the direction
of the train movement. For instance, if a train is arriving from 103 it cannot
move via d1 from 102 to 111 but it can only proceed to 101.

How trains enter and exit, in and from a station, is dictated by the possible
entry and exit points of the station. Entry and exit points are signals that
delimit the station and control the flow inbound and outbound of the station.
Figure 6.1 shows 4 entry points (01, 03, 05, 09) and 4 exit points (02, 04,
06, 09).3 Since in 09 a train can both enter and exit, the signal is oriented
both ways. A route is a sequence of track circuits connecting two different
signals having the same orientation. In Figure 6.1, the route 01-43 consists
of the track circuits 110, 111, 112, 121, 122, 123 and connects the signal
01 with the signal 43. The route implicitly defines the states of the switches
it traverses. For example, for the route 01-43 to be run, the switches d1,
d2, d4 must be in the state through, diverge and through, respectively. A
route can be used to move a train inside a platform and, for such reason, it
must contain all the track circuits of the platform. For example, in Figure

3Note that, on our representation of a station in Figure 6.1, entry and exit signals are
named 0X, platform’s signals are always named 2X and 4X where X is the cardinal number
of the platform, and intermediate signals, i.e. the remaining signals, are named 9X.

126 Discussion: SPP in Applications and Hybrid Planning

d1

d1

d2

d2

d3

d4

d4 d5

d5

d6

d6

d8d7

d8d7

d9

d9

d10

d10

d3

II

III

IV

I

02 21 41

42

43

44

91

92

03

04

05

06

2201

09
23

24

101 102 103 104 105 106 107 108 109

120119118117116115114113112111

122121 123 124 125 126 127

133132131130129128

110

d1

d2

d3

101

113112

d1

d2

d4

d4
IV

111110

d1

d2112

Fig. 6.2 An example of two incompatible routes 01-44 and 22-02 which share
the track circuits 112 and 111.

6.2 the route 01-44 is used to move a train on a platform IV and thus the
route includes a track segment 129. Of course, the description of a station
is expected to represent its layout faithfully, i.e., to represent (at the given
level of abstraction) a “real station". For instance, we assume that a station –
when seen as a graph whose track circuits are the edges– is planar. A more
concrete assumption that we make is (i) that in a track circuit there is at most
one red/green signal for each given direction, or (ii) that two different track
circuits are connected by at most one switch (as a consequence, for instance,
it is not possible to have a train starting from a circuit, then switching from
another circuit and then again back to the starting one). All these (and
many others) assumptions are left implicit and assumed to hold thanks to
the explicit specification of the possible routes each train can take to move
inside the station. When multiple trains are inside the station, to guarantee
the safety of the movements of each train, railway experts define a table of
pairwise incompatible routes. The incompatibility between two routes can
arise from a share of track circuits, i.e., route 22-02 and route 01-44 in Figure
6.2 which share track circuits 111 and 112, or can be declared incompatible
by domain experts, due to the sharing of switches that must be configured in
conflicting states (i.e. through and diverge) for the movement of trains in the
two routes to happen simultaneously.

Trains The trains which move inside a railway station are usually associated
with an ID, which identifies their trip through several stations, and an objective.
For example, in Italy, the ID 8620 identifies a train moving every day from

6.1 In-Station Train Dispatching 127

Roma Termini to Milano Centrale transiting from Camogli and stopping at
Genova Brignole. A train can have one of four objectives:

1. origin if the modelled station is the first in the train’s trip and thus, in
the modelled station, the train will start from a platform and leave the
station through an exit point (e.g. 8620 in Roma Termini),

2. destination if the modelled station is the last station on its trip, thus
entering the station from an entry point and ending its trip stopping on
a platform (e.g. 8620 in Milano Centrale),

3. stop if the modelled station is an intermediate step on its trip, and it is
required to stop at a platform (with a sidewalk able to contain the full
length of the train) to let passengers embark/disembark (e.g. 8620 in
Genova Brignole), and

4. transit if the train will pass through the modelled station, but it will not
stop at a platform (e.g. 8620 in Camogli).

Nominal Timetable A nominal timetable specifies when each train is ex-
pected to pass, arrive and/or depart from a platform. We suppose to have
this information in real time, and thus the timetable indicates the number
of seconds, relative to now, in which the train should arrive or depart. If
the train is (or should have) already arrived or departed, we indicate the
corresponding time with a negative number.

6.1.2 States and Commands

After having described the physical and virtual components of a station, we
now focus on describing the movements of trains inside a station. For example,
let’s take the red train stopped on the platform II in Figure 6.3. The train is
locking the track circuits 114, 115 and 116 which compose platform II (i.e.,
signalling they are reserved for that train). Before the signal 22, (i.e., left(II))
is given the green, authorizing the train to move away from the platform II,
the train must reserve a route, signalling the desired path of track circuits to
reach a destination signal. To reserve a route, all the track circuits of the route
and the ones denoted by the incompatibilities must be free. This reservation

128 Discussion: SPP in Applications and Hybrid Planning

d1

d1

d2

d2

d3

d4

d4 d5

d5

d6

d6

d8d7

d8d7

d9

d9

d10

d10

d3

II

III

IV

I

02 21 41

42

43

44

91

92

03

04

05

06

2201

09
23

24

101 102 103 104 105 106 107 108 109

120119118117116115114113112111

122121 123 124 125 126 127

133132131130129128

110

d1

d1

d2

d3

101

113112

d5

d5

d6

d6

d8

d8

IV

118

Fig. 6.3 An example of the movement of two trains, red and blue. The train
red is stopping on the platform II with its locomotive directed towards the
signal 22. The route 22-02 allows the train to exit the station from the exit
point 02. Train blue has completed running through 03-91. Route 91-24
allows reaching platform IV.

automatically sets the switches in the correct orientation to perform the
movement and locks all the track circuits of the route, avoiding any other
train reserving an incompatible route. After reserving the route, the train can
move through the route. While moving, the train frees the track circuits it
passes with its rear axles. When this happens, the track circuits are unlocked,
becoming available again, thus allowing other trains to reserve other routes
containing them. For example, in Figure 6.3, if the red needs to leave the
station from signal 02, we have to use the route 22-02. Firstly, we have to
assure that no other train is locking track circuits 113, 112, 111, 102, and 101
and none of the other track circuits of routes deemed incompatible with 22-02.
and then we can reserve the route and lock all its track circuits, positioning
the switches d3, d2 and d1 to through, through and diverge, respectively, to
allow for the desired movement. When the train moves through the route,
after having completed it with its rear axles, it starts to unlock the track
circuits, starting from 110.

For simplicity, we don’t model routes outside entry and exit points. When
a train has completed a route which leads to an exit point, we simply unlock
the last track circuit of the route and signal that the train has left the station.
Similarly, when instead arrives from an entry point, we start reserving the
first route of the station, not caring about the track circuits locked outside the
station.

6.1 In-Station Train Dispatching 129

When a train has completed running a route and has reached an inter-
mediate signals inside the station (e.g., 91 in Figure 6.3) it can perform an
overlap between two routes, meaning that, for a certain amount of time, the
train is on both routes at the same time. For example, let’s take the train blue
in Figure 6.3. The train has completed the route 03-91 and, since it needs
to reach the platform IV, it will first reserve and then move into route 91-24
and, for a certain amount of time, overlapping both routes. To ensure safety,
while the overlap is performed, the last track circuit of the originating route
is kept locked.

Station State A station state denotes, at any given time and for each train,
the track circuits it has locked, the routes it has reserved and/or occupied,
and which platform it is possibly occupying, or it has possibly occupied.

Commands After presenting the definition of a (valid) station state, we
now introduce commands. A command is an instruction provided to the
physical and virtual components of the station and to the trains, which can
change the station state in which they are applied. The commands can be of
various types: they can (i) lock or unlock track circuits, (ii) reserve/release
routes to/from trains, (iii) instruct a train to move into a route, (iv) signal
that a route is no longer ran by a train, (v) signal that a train has started
occupying a platform and stopping on it and (vi) signal that the train has
completed stopping and can free the platform. A command is atomic on
a specific track circuit/route/platform, but, in normal operation, they are
provided to the system in sets, called commands’ sets, to govern the multiple
track circuits/routes/platforms involved in the movement of a train.

6.1.3 Forecast

The simulation of the actual timings of the movements of trains inside the
station would require the characterization of the length of track circuits,
platforms and trains, as well as a complex definition of the variation of the
speed of the trains and how they accelerate and decelerate inside the station.
Moreover, to model the time required for the embarkation/disembarkation

130 Discussion: SPP in Applications and Hybrid Planning

of passengers, one would need to keep track of the number of tickets sold
and the number of passengers inside the train. To understand when a train
actually arrives at the station, which could be ahead or behind than what is
scheduled in the timetable, we would also require having an idea of where the
train is outside the station. This could become very complex to manage and to
deal with. Instead, in this chapter, we suppose to be provided with a forecast
system able to estimate, for each train, the running times of track circuits and
routes, the time it takes to overlap between two routes, the stopping time
at platforms and the estimated arrival of trains at entry points. With such a
tool, we do not need to deal with lengths, speeds, passengers nor number of
tickets, but we can extract, directly from the forecast system, the necessary
times. Of course, this complexity is now moved to the forecast system, but,
having it in a separate module, allows us to deal with the granularity and the
closeness to the reality as a different and separate research topic. In fact, one
could find the times of the forecast system simply by a statistical analysis of
the timings of the past (e.g., a train always takes 45s to run through 22-02)
or perhaps clustering it based on information not directly modelled in our
work like weather (e.g., when it rains it takes 60s to run through 22-02) or
seasonality (e.g, in the summer it takes 1 minute more to embark/disembark
all passengers). The system could employ simple statistical methods or very
cutting-edge Machine Learning technologies. The interested reader can find
a description of such forecast systems in Boleto et al. [2021]. Thus, in our
system, we take this forecast for each single train as an input and are not
interested in how the times are actually computed.

6.1.4 The Dispatchment

After having defined what are a station state and a command’s set, we can
now define a dispatchment as a sequence of command’s set. Given an initial
station state, applying the dispatchment consists in sequentially applying the
command’s set of the dispatchment starting from the initial station state. The
dispatchment’s validity thus depends on the validity of the commands’ sets
and the validity of all the station states produced by applying the commands’
sets sequentially. In the previous section, we saw how a forecast system is
used in our model to manage the timings of the movements of the trains

6.1 In-Station Train Dispatching 131

S

T

A

T

I

O

N

E

A

S

T

N

O

R

T

H

S

T

A

T

I

O

N

W

E

S

T

S

T

A

T

I

O

N

d1

d1

d2

d2

d3

d4

d4 d5

d5

d6

d6

d8d7

d8d7

d9

d9

d10

d10

d3

II

III

IV

I

02 21 41

42

43

44

91

92

03

04

05

06

2201

09
23

24

101 102 103 104 105 106 107 108 109

120119118117116115114113112111

122121 123 124 125 126 127

133132131130129128

110

Fig. 6.4 Connections of the modelled station with other stations. Red lines
represent uninterrupted and switch-free tracks outside the station, directly
connecting the entry/exit points of the modelled station with entry/exit points
of the other stations.

inside the station. The concept of validity of a dispatchment, in fact, only
checks that the commands and the associated states of the dispatchment are
valid, but there is no check on the timings in which these commands are
executed. We thus introduce the concept of a forecasted dispatchment, to
denote a dispatchment which respects the timings between the actions as
provided by the forecast.

Exit order The station’s entry/exit points are connected to other stations’
entry/exit points via track lines called line points. Figure 6.4 shows an
example of the connections of the modelled station with other stations. Red
lines represent uninterrupted and switch-free tracks connecting to the other
station. As it can be noted, between the modelled station and Station North,
only one line exists, called simple line, and so trains must proceed in an
alternate fashion between the two stations.4 Between Station West and the
modelled station, two tracks exist, and thus it is a called double line, but
an imposed direction of travel must be respected for each track, disallowing
trains to run in parallel towards the same direction5. Between the modelled
station and Station East instead, four tracks exist (or two double lines), two

4This is common between rural stations which have few trains per hour.
5In Italy, for example, according to Rete Ferroviaria Italiana (RFI) [2023], out of 12.205

km of electrified line points, 4.547 km are simple line points and 7.658 km are double line
points.

132 Discussion: SPP in Applications and Hybrid Planning

for each direction, allowing trains to move from or to the station in parallel.6

These track lines are uninterrupted and do not present switches between
the entry/exit points of the stations, and for this reason, the only overtake
between trains can happen inside the stations. For this reason, based on the
type of the train, (e.g., high-speed, regional, freight, etc.) an order must
always be respected, avoiding any fast-moving train lagging behind a slower
one, and thus imposing that, for example, a high-speed train always leave the
station before any other slower (e.g., regional, freight) train.

In-Station Train Dispatching We are now in the position to define the
In-Station Train Dispatching (INSTRADI) problem. We are provided with (i) a
description of the station with its physical and virtual components, (ii) the list
of trains which are inside the station or that will shortly arrive, (iii) a nominal
timetable, that indicates when trains arrive and depart from a platform in
the station, (iv) the current state of the station, denoting the trains inside the
station, the routes they reserve, the track circuits they lock and platforms they
are occupying or have occupied, (v) a forecast system, and (vi) an exit order
for the trains. We are tasked to find a dispatchment, which is valid w.r.t. the
initial state and forecasted by the forecast, which guarantees that

1. if a train has to stop on a platform, it is never the case that the train
leaves the platform before the time specified in the nominal timetable,

2. the train respects its objectives, i.e.

(a) if the train is of type stop, transit or origin, it must have run
through the station and exited it,

(b) if the train is of type destination, the dispatchment must end with
the train on the platform,

(c) if the train is of type stop, the train must have stopped on the
platform,

3. each pair of trains exiting the station respects the provided exit order.

6This case is more of an exception to the rule. Usually, multiple double lines, spanning
only a few kilometres, are in place only between stations of the same large city, to better
manage the flow of traffic in an urban setting.

6.1 In-Station Train Dispatching 133

d1

d1

d2

d2

d3

d4

d4 d5

d5

d6

d6

d8d7

d8d7

d9

d9

d10

d10

d3

02 21 41

42

43

44

91

92

03

04

05

06

2201

09
23

24

d1

d2

d1

d2

d8

d6 d9

d6

II

III

IV

I
101 102 103 104 105 106 107 108 109

120119118117116115114113112111

122121 123 124 125 126 127

133132131130129128

110

Fig. 6.5 All the routes that connect the entry point 01 with the exit point 04.
They are 01-41, 01-42, 01-43, 01-44, 41-04, 42-04, 43-04, 44-05.

6.1.5 SPP for the INSTRADI Problem

Tackling the INSTRADI problem via planning approaches has already been
proved very effective in one of the candidate’s work [Cardellini et al., 2021a,b,c]
where hybrid planning – which we will explore later in the chapter – was
used to model the problem. In that work, we demonstrated that planning
could be very beneficial in reducing train delays on the nominal timetable.
The approach was prior to the introduction of SPP and was focused mainly on
modelling and the introduction of domain-dependant approaches to simplify
the problem, while the job of finding of a plan was given to the state-of-the-art
solver ENHSP.

In this section, we discuss the possible benefits of using the SPP approach
in the INSTRADI application. The first reason of why the SPP approach can be
very beneficial has already been demonstrated in the Chapters 2 through 5,
where the solver PATTY, based on the SPP approach, was able to outperform
all the state-of-the-art solver, including the ENHSP solver. This would greatly
increase the solving capability, resulting in the possibility to be able to plan
the movements of trains inside bigger stations with a larger number of trains.

The second reason instead lies in the use of patterns. As it can be seen
by the description of the INSTRADI problem in the previous sections – and
especially by Fig. 6.5 – inside a railway station, the sequence of the actions a
single train has to make – e.g., for a transit train, entering the station, running
through a route, stopping at a platform, departing from a platform and exiting
the station – is fixed and can be known a priori. In fact, if we look at all these

134 Discussion: SPP in Applications and Hybrid Planning

possible actions for a train, we can easily see that there is already a partial
order between all the actions concerning a single train. Let’s consider, for
simplicity, a transit train like the one depicted in Figure 6.5, which needs to
move from the entry point 01 to the exit point 04. We can infer some simple
rules on the order of the actions.

1. The entrance of the train from the entry-point 01 must happen before
any other action.

2. The movements from the entry-point 01 to any of the platforms I, II, III, IV,
are all mutually exclusive with each other, since the train cannot move
on two routes at the same time and can only happen after the train has
entered the station.

3. Stopping at any platform can happen only after the movement from the
entry-point to the signal of the station.

4. Departing from any platform can happen only after the train has stopped
at that platform.

5. Moving from any platform to the exit point 04 can only happen after
the train has departed the station and all the actions that perform this
movement are in mutex with each other.

6. Exiting the station from 04 is the last action performed by the train.

Looking at this example, we can thus see, that, for a single train, the order
between the actions can already be known a priori and the purpose of the
planner would be restricted to choose only a correct path for the train.

When dealing with multiple trains instead, we need to consider the tempo-
ral aspect. Given two trains which need to move inside the railway network,
like the ones in Fig. 6.2, both trains might need to move on the same track
circuit, route, or platform. Thus, we need to consider the interleaving of the
two actions that make the two trains use the same resource, and put one
before the other. If the two trains are scheduled in the station – by the forecast
– at times distant between each other, the tie can be easily broken by putting
first the action of the train that arrives first in the station. In the case where
the trains are scheduled very close to each other, instead, we can break the
tie according to some heuristic, that would tell us which train should pass

6.2 Hybrid Planning 135

first7 or we could employ a non-simple pattern which contains a repetition of
the same action. To illustrate the last case, consider two actions a and b. The
pattern ≺ = a; b; a covers both plans π1 = a; b and π2 = b; a where the two
actions appear in either order.

Following the considerations made up until now, we can see that, the
order of the actions can be already defined a priori, lightening the burden of
the solver, which now only needs to find the correct path for each train and
the correct temporal interleave of the actions to guarantee the safety of the
movements. This is why we believe the SPP approach would be very beneficial
in solving the INSTRADI problem.

6.2 Hybrid Planning

The nature of real-world applications usually requires the ability to reason in
terms of continuous changes of numeric variables, and where the environment
in which the agents act can respond to the agents’ actions. In automated
planning, this necessity led to the design of hybrid planning, expressible with
PDDL+ [Fox and Long, 2006], that introduces the notions of processes and
events to represent continuous change on numeric variables and effects which
are not under the control of the planner. Hybrid planning has already proved
very effective in solving complex real-world problems such as Traffic Control
[Vallati et al., 2016], Train Dispatching [Cardellini et al., 2021c], Unmanned
Aerial Vehicle Control Kiam et al. [2020] and Pharmacokinetic Optimization
[Alaboud and Coles, 2019]. Hybrid planning tasks are notoriously difficult to
cope with and a well-established approach to reason upon hybrid planning
problems is through discretisation [Penna et al., 2012; Percassi et al., 2023a;
Cardellini et al., 2024c], which allows breaking down complexity by assuming
the time is discrete, and so are the actual numeric changes. This enables
the reuse of well-established general search techniques based on forward
state-based exploration to address hybrid planning problems.

7Note that in this scenarios – called conflicts in the railway jargon – this tie breaking
approach is what human train dispatchers currently perform manually, choosing between
the two trains based on the knowledge of the network, the traffic, and the delays of the two
trains.

136 Discussion: SPP in Applications and Hybrid Planning

6.2.1 Formalism

Let δ ∈ Q≥0 be a discretisation step. A Discrete Hybrid (DH) planning task,
expressible with PDDL+, is a tuple

Πδ = ⟨Vb, Vn, I, G,A,E, Pδ⟩.

The sets Vb and Vn are sets of propositional and numeric variables with
domains in {⊤,⊥} and Q, respectively. A state s is a total assignment to
the variables in Vb and Vn to their respective domains. The initial condition
I is a state. A propositional condition is an expression of the form v =

⊤ or v = ⊥ with v ∈ Vb. A numeric expression φ is a formula over the
variables in Vn and coefficients in Q, in which variables can appear summed,
subtracted, multiplied and divided between each other. A numeric condition
is an expression of the form φ ⊵ 0, with φ being a numeric expression and
⊵ ∈ {=, >,≥}. The goal G is a set of propositional and numeric conditions.
The sets of actions A, events E and processes Pδ are sets of happenings. A
happening h is a tuple of the form ⟨pre(h), eff(h)⟩ where the precondition
pre(h) is a set of propositional and numeric conditions and the effect eff(h) is
a set of propositional and numeric assignments. A propositional assignment
is an expression of either v := ⊤ or v := ⊥ with v ∈ Vb. A numeric assignment
is an expression of the form x := φ with x ∈ Vn and φ a numeric expression.
Even if, syntactically, the actions A, the events E and the processes Pδ are all
sets of happenings, semantically they are quite different. Actions prescribe
may transitions, meaning that, even if they are applicable, the planner could
decide not to apply them. Events and processes instead prescribe must
transitions, meaning that, if their preconditions are satisfied, they must be
immediately applied by the planner. Events model one-time change in the
propositional and numeric variables, while instead processes model a flow
of change in the numeric variables. For this reason, we will assume in the
following that processes have, in their effects, only numeric effects in the form
x := x+ φ1 · δ, with φ1 a numeric expression denoting the discrete change of
x.

Let s be a state, v be a variable in Vb ∪ Vn and φ a numeric expression, we
denote with s(v) the value assumed by the variable v in the state s, and with

6.2 Hybrid Planning 137

s(φ) the value obtained by substituting in φ all the variables x ∈ Vn with s(x).
A set of propositional or numerical conditions Ψ is satisfied in a state s, written
as s |= Ψ, if for each v = ⊤ or w = ⊥ in Ψ, we have s(v) = ⊤ and s(w) = ⊥
and for each φ⊵ 0 in Ψ, we have s(φ)⊵ 0. A happening h is applicable in a
state s if s |= pre(h). Applying a happening h to the state s results in the state
s′ = res(h, s) in which, (i) if v := ⊤ or w := ⊥ is in eff(h), then s′(v) = ⊤ and
s′(w) = ⊥, (ii) if x := φ is in eff(h), then s′(x) = s(φ), and (iii) s′(v) = s(v)

otherwise. Applying a sequence of happenings ⟨h1, . . . , hk⟩ to a state s results
in the state res(⟨h1, . . . , hk⟩, s) = res(hk, res(hk−1, res(. . . , res(h1, s)))).

We indicate with E(s) ⊆ E the set of events which are triggered at a state
s, i.e., E(s) = {e ∈ E | s |= pre(e)}. In this chapter, we follow the semantic of
events specified in Fox et al. [2005] for guaranteeing determinism of events.
In particular, we impose that (i) each pair of events in E(s) are not in mutex
with each other (i.e., applying them in any order doesn’t change the outcome),
and (ii) that after applying all the events in E(s) it is no longer possible to
apply any event in E(s) again, thus avoiding infinite repetition of events. We
denote with res(E(s), s) the result of applying all the events in E(s) in an
arbitrary sequence.

Similarly to E(s), we define Pδ(s) as the set of processes which are appli-
cable in the state s. For this reason, given a state s, with applicable processes
Pδ(s) we can compute the state s′ resulting from the application of all the
applicable processes as s′ = res(Pδ(s), s) such that s′(v) = s(v) for each v ∈ Vb
(since propositional variables can’t continuously change) and

s′(x) = s(x) +
∑

φ∈Φδ(x,s)

s(φ) for each x ∈ Vn,

where Φδ(x, s) = {φ1 · δ | x := x + φ1 · δ ∈ eff(p), p ∈ Pδ(s)} is the set of
discrete changes to x applicable from s.

DH Plan Validity. Let δ be a discretisation step and Πδ a DH planning
task. A DH plan π of Πδ is a sequence of length n of timestamped actions
where actionπ(k) ∈ A is the k-th action of the plan which is applied at the
timestamp timeπ(k) ∈ {i · δ | i ∈ N}, with k ∈ {0, . . . , n − 1}. The plan is
coupled with a value Mπ ∈ Q≥0 which represents the make span of the plan,

138 Discussion: SPP in Applications and Hybrid Planning

i.e., when the last action or event triggers or process terminates, in general
Mπ ≥ timeπ(n − 1). Since the plan only contains actions, to validate it, we
need to emulate the behaviour of events and processes to understand how
the state of variables changed over time. For this reason, we project the plan
into a discrete history in which time is discretized according to δ. A history
H = ⟨S1, . . .Sm⟩ is an ordered list of situations. A situation Si is a tuple
⟨ti, ci, si, ai⟩ where ti ∈ Q≥0 is the time of Si, ci ∈ N is a counter, keeping track
of the number of actions projected until Si, si is the state of the situation Si,
and ai ∈ A ∪ {ϵ} is the action which is applied at Si, with ϵ be a no-op action
with empty preconditions and effects.

Let Πδ be a DH planning task, I the initial condition of Πδ, δ ∈ Q≥0 a
discretisation step and π a discrete plan for Πδ with make span Mπ. We say
that a history Hπ

δ = ⟨S1, . . . ,Sm⟩, with m ≥ n, is a discrete projection of π
with discretisation step δ if

A0 S1 = ⟨t1, c1, s1, a1⟩ with t1 = 0, c1 = 0 and s1 = I,

and for each two contiguous situations Si = ⟨ti, ci, si, ai⟩ and Si+1 = ⟨ti+1, ci+1, si+1, ai+1⟩
with i ∈ {1, . . . ,m− 1}

A1 if E(si) ̸= ∅ then ai = ϵ, si+1 = res(E(si), si), ci+1 = ci and ti+1 = ti,

A2 if E(si) = ∅, and timeπ(ci) = ti then ai = actionπ(ci), si+1 = res(ai, si),
ti+1 = ti and ci+1 = ci + 1,

A3 ifE(si) = ∅, timeπ(ci) ̸= ti and ti < Mπ then ai = ϵ, si+1 = res(Pδ(si), si),
ti+1 = ti + δ and ci+1 = ci.

We build the projection in a forward fashion. Rule A0 describes the initial
situation at time zero, in which no action is yet projected, and the state is
equal to the initial condition. After the initialisation, one of three things can
happen, either events trigger, an action is applied, or processes are applied,
bringing the time forward. Rule A1 states that if events can be triggered, they
must be triggered, keeping the time still. If applying the events causes other
events to become applicable, A1 is applied at all the following situations until
the set is empty. Rule A2 states that if no event is applicable and the next
action in the plan (based on the counter ci) happens at the current time ti,
we apply it. If after applying the action, other events become applicable, rule
A1 keeps expanding until no event can trigger. Finally, when all events have

6.2 Hybrid Planning 139

triggered and all the actions at that time (if any) have been applied, we can
apply the processes with rule A3, moving the time forward of one step δ.

Let δ be a discretisation step, π be a discrete plan of a DH planning task
Πδ, and let Hπ

δ = ⟨S1, . . . ,Sm⟩ be a discrete projection of π with discretisation
step δ. We say that π is valid w.r.t. the discretisation step δ iff

• for each Si = ⟨ti, ci, si, ai⟩ with i ∈ {1, . . . ,m− 1} we have si |= pre(ai),
and

• in Sm = ⟨tm, cm, sm, am⟩ we have sm |= G.

6.2.2 SPP in Hybrid Planning

Hybrid Planning represents the most challenging flavour of planning that
we covered in this thesis. In fact, there are mainly two difficulties of hybrid
planning:

1. Respecting the must semantic [Cashmore et al., 2016]: i.e., if an event
or process its applicable, their effects must be applied, which is the
opposite of the may semantic, where if an action is applicable, its effects
may be applied, depending on whether the actions is applied or not.

2. The discrete effects of action and events, and, most importantly, the con-
tinuous effects of processes can be defined through non-linear functions,
which make difficult to compute the value resulting in the application
of the effect, to compute heuristics or to determine the next state.

As a result of these complicances, there exists only few planners able to deal
with hybrid planning problems in their full specification, i.e., ENHSP [Scala
et al., 2016c], UPMURPHI [Penna et al., 2012], DINO Piotrowski et al. [2016],
dREACH [Bryce et al., 2015], SMTPLAN+ Cashmore et al. [2016]. Out of these
solvers, only dREACH and SMTPLAN+ are PaS based and only SMTPLAN+ can
deal fully with the must semantic and the non-linear effects, while dREACH

considers only hybrid planning tasks without events.

Fig. 6.6 shows a graphical representation of how the SMTPLAN+ planner
solves a hybrid planning problem using a PaS approach. Having fixed a bound
n on the number of steps, each gay box represents a time point in the plan,

140 Discussion: SPP in Applications and Hybrid Planning

Non-Mutex
Actions

Events

Active
Processes

Non-Mutex
Actions

Events

Active
Processes

Non-Mutex
Actions

Events

I

G

Fig. 6.6 Figure taken from Cashmore et al. [2016] showing how the SMTPLAN+
solver encodes a hybrid planning task into a PaS encoding.

with ti < ti + δ ≤ ti+1 for i ∈ [1, n). For each step i, there are two time points
ti and ti + δ. Every circle is a state. The states in ti are all the intermediate
states between application of the actions and events which are applied in ti.
In ti+δ are reflected all the effects of the process active in ti from the last state
after all actions and events are applied in ti. As for the standard PaS approach
[Rintanen et al., 2006], for each step i only non-mutex actions are allowed
to be applied at the same step, thus representing the first transition between
the states at the time ti, then, all the possible events which are triggered by
the application of the actions are applied. Following the semantics, the same
event cannot be triggered more than one time at the same time, thus, after at
most |E| different states, the resulting state is reflected in ti + δ and we can
proceed to apply all possible processes and their (possible) non-linear effects,
reaching the state in ti+1. By checking if the first state at time t1 coincided
with the initial condition I and the last state at time tn + δ satisfies the state
G, we can search for a plan with bound n, increasing n upon unsatisfiability.

Just by looking at Fig. 6.6, it can be noted how the SPP approach can be
greatly beneficial also in the case of Hybrid Planning. In fact, the arrows that
connect I to G provide a total order between actions, events, and processes.
For this reason, a pattern for a hybrid planning problem, is a finite sequence
of elements in A ∪ E ∪ Pδ. Moreover, by the semantic, we know that at each
time point ti (i) events can happen at most one time, and (ii) all the applied
events should not be in mutex, since their triggering order should not matter.

6.2 Hybrid Planning 141

For this reason, in the pattern we can interleave each pair of actions ai, ai+1

in A with the events in |E|, in any order, which could be triggered by the
application of ai, imposing some constraints to avoid mutex events being
applied at the same time. As standard for the SPP approach, using the pattern
can greatly reduce the bound n required to find a solution. We plan to explore
how this approach performs compared to SMTPLAN+ in future work.

Chapter 7

Conclusions, Future Work and
Algorethic

In this thesis, we have seen how the SPP approach can be very beneficial in
many flavours of planning. We started analysing Classical and Numerical
Planning in Chapter 2, then considered the case with Conditional Effects in
Chapter 3 and Temporal Planning in Chapter 4. Then, focusing on the Numeric
Planning flavour, we discussed in Chapter 5 how a symbolic-based search
strategy can improve the performances of the SPP approach, by changing the
pattern at some intermediate points in the search of a plan. Finally, in Chapter
6, we discussed how the SPP approach can be beneficial also on application
domains, like the In-Station Train Dispatching Problem and on the higher
flavour of planning, i.e., Hybrid Planning.

7.1 Future Work

We now recap each chapter’s conclusion, and discuss on what could be the
next steps, together with the ideas that the candidate hopes to be able to
tackle in the upcoming years after his PhD.

1. In the conclusions of Chapter 2, we discussed how, in the modern
editions of the International Planning Competition and in the recent
literature, much focus has been given to trying to solve planning prob-

7.1 Future Work 143

lems through lifted planners. The use of a lifted representation, instead
of a grounded one, allows for planners to tackle planning problems
with thousands of variables and actions in a more compact way, thus
accelerating the planning procedure. Instrumenting this thesis solver’s
PATTY as a lifted planner would be very beneficial in solving all those
problems, very popular in the realm of transportation and logistics,
where there is the need to plan the movements of thousands of agents
and objects.

2. In Chapter 3, we saw how computing the transitive closure for each
action, compactly representing all the states reachable by multiple ap-
plications of the same action, can be very beneficial in solving planning
problems with CEs. We saw in the experimental analysis that computing
the transitive closure becomes expensive when the number of variables
involved increase. In the conclusions of that chapter, we discussed how,
in the past three decades, several approaches have been presented in
the literature to reduce the cost of computation of the transitive closure,
either by parallelizing the computation or by subdividing the problem
into smaller sub-problems. Analysing these approaches and comparing
them, together with analysing how the special case of classical planning
with CEs could be exploited in the computation of the transitive closure,
could be very beneficial and allow solving even more problems.

3. In Chapter 4, we discussed how the SPP approach can be beneficial in
the case of Numeric Temporal Planning. We remember that in Temporal
Planning, an action’s preconditions can be specified to hold either at the
start, at the end or throughout the action, while effects could be applied
only at the start or at the end. A rather new formalism of Temporal Plan-
ning has lately emerged from the literature, called Temporal Planning
with Intermediate Conditions and Effects (ICEs) [Valentini et al., 2020].
In this formalism, conditions and effects are indeed intermediate, mean-
ing that conditions can be configured to hold at some specific interval
throughout the action and effects can be scheduled to be applied at
some specific time after or before the action has started or ended. This
approach has attracted a lot of attention lately due to its capacity to
better model real-world domain applications. In the case of Temporal

144 Conclusions, Future Work and Algorethic

Planning with SPP, we saw that a pattern is a sequence of snap actions,
either starting or ending a durative action. In the case of Temporal Plan-
ning with ICEs, the pattern could become a finite sequence of events,
which would signal either the start/end of an action, the start/end of
the interval in which a condition must hold, or the application of an
effect. Looking at how the SPP approach would be beneficial could help
better solve real-world scenarios.

4. In Chapter 5 we saw how, in the SPP approach, the use of the same
static pattern, computed from the initial condition, could be detrimental
in some domains where the order between actions is not fixed and
could change at some point during the plan. Thus, to improve the SPP

approach, we presented a technique to recompute the pattern during the
search phase, by searching for some intermediate states in which at least
one of the subgoals was satisfied, and computing the pattern again from
that intermediate state. In that approach, it was paramount to iteratively
find intermediate states which always satisfied an additional subgoal
more than the previous intermediate state. The approach thus greatly
depends on the subgoals of the planning task, and how states that
satisfy them are positioned in the state-space. Moreover, the approach
could be nullified by the presence of a single (sub-)goal. Subgoaling
has been extensively studied in the literature, also for numeric planning
(see, e.g., [Scala et al., 2016a, 2020]), and the discussed limitations
are well-known in the literature. For this reason, another alternative
to subgoaling was introduced. Landmarks [Helmert and Domshlak,
2009], roughly speaking, landmarks are facts – i.e., assignments to
variables – that must be true at some point in every valid solution plan.
Unfortunately, computing landmarks is a PSPACE-complete task on its
own. Even if intractable, many planners employ relaxed computations
of landmarks to compute heuristics [Helmert and Domshlak, 2009;
Kuroiwa et al., 2022] and to improve the search of a plan. In our
approach, using landmarks could amount allow finding intermediate
states earlier and recompute the pattern from those intermediate states,
even in the presence of a single subgoal.

7.2 Algorethic of Planning 145

5. Chapter 6 contains a discussion on how to improve, through the use of
SPP, application domains like the In-Station Train Dispatching Problem
and the Hybrid Planning flavour. These are only discussions, but the
candidate is currently working on consolidating the claims made in the
chapter.

In this thesis, we hope to have given the idea that the SPP approach can be
a new, interesting and powerful technique to solve planning problems for
real-world applications.

7.2 Algorethic of Planning

Motives. Since I1 believe that the SPP approach presented in this thesis
could be beneficial in several real-world applications, here I want to give a
small contribution to the public discussion that, in the past years, has emerged
regarding the ethics of Artificial Intelligence (AI). This contribution does not
pretend to be a new contribution to the ethic’s literature, which I leave to
ethicists and philosophers to do, but rather wants to be a space in which I
reflect on potential harm in the use of planning – which has been improved
by the SPP approach – in real-world applications that are nowadays touching,
directly or indirectly, the every-day life of every human being. In this section, I
will collect the thoughts that other people, more expert and deep than myself,
have produced in the last years. The motivation for this section lies in my
belief that, even as scientists – even when working in theoretical domains thus
not actually implementing our ideas in applications – we have a responsibility
in at least get informed on the problems and risks that our technologies pose
and thus trying to guide our work to be used only in the applications that we
deem correct and secure.

“Scientists and those working in the digital world should continue
to promote such research, engaging in a noble competition to
combat the wrongful use of newly available technology. I therefore
appeal to computer engineers to feel personally responsible for

1The thoughts and considerations presented in this section are to be considered the work
of the doctoral candidate and no one else.

146 Conclusions, Future Work and Algorethic

building the future. It is their task to undertake, with our support,
an ethical development of algorithms – an algorethic –, and in this
way, to help create a new ethics for our time” (Francis [2019])

The term algorethic [Benanti, 2018, 2023] is meant to identify a new
ethics discipline concerning the ethical development of algorithms of AI.

Definition of AI. During my PhD – which started in November 2021 and
ended in November 2024 – AI saw a deep surge in attention from the public,
and in particular from the media. This surge was originated by the launch, in
November 2022 of the software called ChatGPT, the first chatbot based on new
AI technologies called Generative Adversarial Networks (GAN) [Goodfellow
et al., 2014] and Large Language Models (LLM) [Vaswani et al., 2017], which
were actually published in the literature several years before. This new
software shook completely the world and all media outlets started covering
the topic, sometimes with very exaggerated tones, which has contributed to
grow even more what it is now called the AI spring [Manyika and Bughin,
2019]. This excitement led to new products based on LLMs being produced
almost daily and the public being exposed constantly to stories and examples
of these products. This exposure has produced the effect that, nowadays, the
term AI has become mostly a synonym for LLMs. However, as researchers,
especially in the planning community, we know that AI is instead much more
broad. If we read the definition of AI in Article 3 of the AI act of the European
Union, i.e., the law which regulates the use of AI in the European Union,
which should enter into force in February 2025, we read that the definition of
AI is

“a machine-based system that is designed to operate with varying
levels of autonomy and that may exhibit adaptiveness after deploy-
ment, and that, for explicit or implicit objectives, infers, from the
input it receives, how to generate outputs such as predictions, con-
tent, recommendations, or decisions that can influence physical or
virtual environments.” (Council of European Union [2024a])

and in Recital 12 we read

7.2 Algorethic of Planning 147

“A key characteristic of AI systems is their capability to infer. [...]
The techniques that enable inference while building an AI system
include machine learning approaches that learn from data how
to achieve certain objectives, and logic- and knowledge-based
approaches that infer from encoded knowledge or symbolic repre-
sentation of the task to be solved.” (Council of European Union
[2024b])

This definition and the recital denotes actually a much broader categorization
of AI based on the type of inference (also known as reasoning): either
the inference (i) is inductive, i.e., machine learning approaches, like LLMs,
that learn from data, or (ii) deductive, i.e., logic- and knowledge-based
approaches. The topic of this thesis, planning, falls indeed in the deductive
reasoning categorization.

Two kinds of AI to emulate the brain. In his seminal book, Thinking, fast
and slow [Kahneman, 2011], Kahneman describes how the human brain’s
mode of thinking can be categorized into two systems: System 1 and System
2. System 1 is fast, automatic, and intuitive, handling routine tasks and
reactions with little effort. It’s quick but prone to errors and biases, relying
on instincts and mental shortcuts. In contrast, System 2 is slow, deliberate,
and logical, requiring focused attention and analytical thinking. This system
steps in for complex or unfamiliar problems, offering more accurate, rational
decision-making but at a mental cost. While System 1 often dominates,
System 2 helps correct errors, balancing fast intuition with careful thought.
It can be noted how, in our definition of AI, System 1 can be mapped into
inductive reasoning – i.e., machine learning – while System 2, can be mapped
into deductive reasoning – i.e, logic- and knowledge-based approaches, like
planning. The inductive and deductive approaches, emulating System 1 and
System 2, have always been developed in parallel, with few attempts to join
the two approaches together, and presently, there is not a singular system
able to emulate together System 1 and System 2.

The System 2, or deductive reasoning, actually was the first branch of AI

that sprung interest and awe outside the community [Buchanan, 2005] with
the development of knowledge-based expert systems in the 1960s and early

148 Conclusions, Future Work and Algorethic

1970s, and more famously in 1997, where the expert system of IBM, Deep
Blue, was able to win in a game of chess against the master Garry Kasparov.
In 2010, came the advent of social media and search engines, together with
an increase in the computing power of machines. The inductive reasoning
approaches, like machine learning, deep learning, GANs and LLMs, which
were at first limited by the amount of data and computing power required
to train, thus started to become feasible approaches, and rapidly surged the
interest of researchers and the public. As for every innovation, the surge of
work and interest in a new technology, creates the illusion that that particular
technology can solve any problem that we present to it, only to fail in their
endeavour. This happened to expert systems in the late 80s and 90s and is
happening now with the plethora of systems based on LLMs and GANs. Thus,
when systems do not live up to the enthusiasm, solutions start to become old
and disappointment certainly follows. When this happened to expert systems
in the 80s, it was called the AI winter, which led John Haugeland to coin the
expression Good Old-Fashioned Artificial Intelligence (GOFAI), to indicate the
deductive reasoning approaches, stating the idea that these approaches were
destined to disappear, since they are unable to bring useful solution to the
market [Haugeland, 1989].

LLMs cannot do everything. The idea that a new technology is the ultimate
answer for every problem is nowadays gaining even more attraction for
the case of LLMs, where the public, the media, some AI companies and,
unfortunately, some AI researchers, are screaming how Artificial General
Intelligence (AGI) – i.e., one artificial intelligence system which can perform
every possible task provided, thus combining both System 1 and System 2 –
can be achieved through the use of LLMs and its realisation is near or will be
here in n weeks or months.

Fortunately, this wave of claims of the closeness to build an AGI is con-
trasted by few researchers which actually try to dismantle these claims with
science. The work of Rao Kambhampati’s Team [Kambhampati, 2024; Kamb-
hampati et al., 2024; Valmeekam et al., 2024] is showing that the argument
of this thesis, planning, is actually one of the biggest examples of why LLMs
are not at all near to be considered AGIs. In their work, Kambhampati et al.
empirically show how state-of-the-art LLMs-based chatbots, like ChatGPT, do

7.2 Algorethic of Planning 149

not manifest real planning abilities, but mostly use their great capacity to
retrieve information learned from its training data to provide plans only for
those planning tasks which have already been solved and which solution was
inside the training data. In fact, they made an experiment using the most
popular classical planning problem, Blocksworld. In Blocksworld, a set of
blocks are placed either on a table or on top of other blocks and the goal is to
arrange some of these blocks in a stack in a particular order either by stacking
them on top of each other, or unstacking them. On this domain, the latest
version of ChatGPT was able to solve 34.6% of the planning tasks provided.
When the name of the actions were changed to words with different meanings
– e.g, stack becomes attack and unstack becomes feast – the solved planning
problems by ChatGPT dropped to 0.2%. Since a planner’s ability to find a
plan does not depend on the name of the action, it is clear that the abilities of
ChatGPT on planning was only due to the presence, in the training set, of the
solutions of the planning task.

Thus, planning is currently one of the champions of the deductive branch
of AI, showing that LLMs are actually very great at emulating System 1, but
not so much when it comes to System 2. As stated by Kahneman, System 2
helps correct errors, balancing fast intuition with careful thought. With their
inability to emulate System 2, thus LLM systems like ChatGPT do not have
the correct tool to autoregulate, being critic of their output and thus produce
solutions which are transparent, inclusive, responsible, impartial, trustable,
and secure2. There are thus three possibilities regarding these limitations of
LLMs, either

1. System 2 emulation, and thus planning, is indeed not an interesting
problem for the public, as claimed by Haugeland, and thus LLMs will
continue to be the most prominent paradigm for AI,

2. if it is indeed an interesting problem, then either LLMs will fail to
overcome their limitation, hitting a wall at these kinds of problems,
leading again to a AI winter, or

2These are the principles discussed in the AI Rome Call for Ethics, which we will discuss
further ahead

150 Conclusions, Future Work and Algorethic

3. a significant number of resources will be put into creating new technolo-
gies – beyond LLMs– which could emulate System 2 and thus planning.

I argue that we are heading in the direction pointed by the 3rd item, and thus
is of paramount importance to pose some ethical questions also to System 2
technologies, like planning, before the hype on these technologies causes – as
already happened for LLMs– a gold rush which gives small attention to ethical
considerations.

Planning in a belligerant world. In 1968, the catholic Pope Paul VI es-
tablished January 1st as the “World Day of Peace”. In the midst of the Cold
War, the Pope wanted to dedicate a day to reflect and pray for peace, each
year characterized by a message by the pontiff, reflecting on a particular
theme. For the 58th World Day of Peace, held on the 1st of January 2024,
Pope Francis dedicated the day to the theme “Artificial Intelligence and Peace”
[Francis, 2024b]. The catholic Pope – which in the collective imaginary is
at the antipodes of the topics of technology and engineering – felt the ur-
gency to send a message to the civil society, the international community
and researchers to warn against the risks that AI pose to the world’s peace.
This is indeed remarkable and worthy of note, and should be taken seriously
by researchers. Currently, in 2024, there are 42 countries in a state of war
[World Population Review, 2024]. While the media is stressing the conflict
in Ukraine and in the Holy Land, which had the most estimated casualties in
2024 – respectively 49,881 and 22,386 – there are other countries which get
less coverage, currently facing a Civil War – like Myanmar, Sudan, Ethiopia,
and Syria – or victim of terrorism – like Nigeria, Burkina Faso, Mali and the
D.R. of Congo – or facing a drug war – like Mexico.

AI systems are already being used in warfare in various conflicts, and
the military sector is where AI is becoming more advanced, thanks to high
funding. In this domain, planning can be used to select the best strategies for
invasions, which targets should be eliminated first, thus seeking the best plan
that minimizes losses on one side and maximizes them on the other. Using
AI systems for warfare, completely removes the human conscience from the
decision. By abstracting human-life into variables, probabilities and metrics,

7.2 Algorethic of Planning 151

we create a barrier between us and the suffering of human beings, and thus
the loss of human-life becomes just a number. In the message mentioned
above, Pope Francis wrote:

“In these days, as we look at the world around us, there can be
no escaping serious ethical questions related to the armaments
sector. The ability to conduct military operations through remote
control systems has led to a lessened perception of the devastation
caused by those weapon systems and the burden of responsibil-
ity for their use, resulting in an even more cold and detached
approach to the immense tragedy of war. Research on emerging
technologies in the area of so-called Lethal Autonomous Weapon
Systems, including the weaponization of artificial intelligence, is
a cause for grave ethical concern. Autonomous weapon systems
can never be morally responsible subjects. The unique human
capacity for moral judgment and ethical decision-making is more
than a complex collection of algorithms, and that capacity cannot
be reduced to programming a machine, which, as “intelligent” as
it may be, remains a machine. For this reason, it is imperative to
ensure adequate, meaningful and consistent human oversight of
weapon systems.” (Francis [2024b])

Planning in a lonely world. In 2020, the entire world experienced a com-
mon fragility. The Covid-19 pandemic united us in the idea that we are
all equally fragile, regardless of our social status, education and economic
resources. The pandemic made us face our limits. We learned to think more
about other people, to take care of the people we loved, who we could no
longer see. Unfortunately, after the pandemic, we quickly forgot the lessons
we had learned, and went in an entirely different direction. The abrupt
return to everyday life made us quickly forget the lessons we have learnt. The
decline, that we faced even before the pandemic, quickly reprised, even more
steeply, bringing us to an even more individualistic world. The competition
between people, the structure of the cities, of the work environment, of build-
ings, fashion and lifestyle, the use of social networks are rapidly feeding the
increase in the city of lonely people, as if loneliness was a direct cause of the

152 Conclusions, Future Work and Algorethic

modern world. This has increased the discrepancy with the peripheries, not
only geographically, in the sense of suburbs, but also the “existential periph-
eries”, which are present even in the city centre, in the houses of lonely old
people, in nursing homes, in the migrant families where parents have to work
multiple jobs, in jails. Loneliness is a risk factor for mortality [Holt-Lunstad
et al., 2015]. The 21st Surgeon General of the United States, Vivek Murthy,
in a report on “Healing Effects of Social Connection and Community” wrote
in 2023

“Such a world, where we recognize that relationships are just as
essential to our well-being as the air we breathe and the food we
eat, is a world where everyone is healthier, physically and mentally.
It is a world where we respect and value one another, where we
look out for one another, and where we create opportunities to
uplift one another.” (Office of the Surgeon General [2023])

For “existential peripheries”, AI techniques must consider social relation-
ships as a positive factor and not something to minimize. The tendency
nowadays is to build solutions that make our life faster, easier and where ev-
erything can be delivered without leaving our homes. Planning technologies,
must not always consider the shorter plan, which could also minimise inter-
actions, as the only valid solution, but must consider the social aspect of the
plan, strengthening the possibility of encounters and relationships between
actors. The definition of planning, as agents which act in the environment,
which we used also in this thesis, should not make the planning task designers
forget that agents are still humans, and thus interactions between the human
agents must be encouraged and not diminished.

Concerning “geographical peripheries”, AI systems used in urban planning
and in the management of traffic [Vallati et al., 2016; Cardellini et al., 2024a]
must consider how the urban network could present skewed topologies, which
could amount in more traffic being routed in the outskirts of the cities, with
an increase in pollution and health issues in the population.

“The use of autonomous and fixed metrics to distribute traffic
can lead to certain urban areas receiving prolonged heavy traf-

7.2 Algorethic of Planning 153

fic, with a significant detrimental impact on quality of life, prop-
erty valuation, and increased health risks due to pollution and
noise. Addressing this issue requires ensuring that the benefits and
burdens of vehicles are distributed equitably and do not impact
communities disproportionately.” (Guo et al. [2024])

Planning in a burning world. Climate change is one of the most pressing
issues facing our world today. Over the last 50 years, global temperatures have
risen significantly, with the Earth’s average surface temperature increasing
by about 0.9 °C to 1.2 °C (1.6 °F to 2.2 °F) since the late 19th century. These
significance shifts in global temperatures are primarily driven by human
activities, such as burning fossil fuels, deforestation, and industrial processes.

AI is unfortunately contributing to this phenomenon. Training LLMs, like
ChatGPT, on huge amounts of data, requires a lot of power and water to cool
down the machines. A recent survey by the Washington Post showed that
to train GPT-3, Microsoft employed 700,000 litres of water, while Meta used
22 million litres while training the open-source LLaMa 3. A simple query
run by ChatGPT consumes “0.14 kilowatt-hours (kWh) of electricity, equal
to powering 14 LED light bulbs for 1 hour”. A simple query run by ChatGPT
“once weekly for a year by 1 out of 10 working Americans requires 121,517
megawatt-hours (MWh), equal to the electricity consumed by all D.C. house-
holds for 20 days”. In July, Google released its most recent environmental
report, showing its carbon emission footprint rose by 48 percent, largely due
to AI and data centres. It also replenished only 18 percent of the water it
consumed [Verma and Tan, 2024].

As explained in previous paragraphs, despite being empirically proven, the
fact that “LLMs cannot plan” [Valmeekam et al., 2024] is an idea that most
researchers and, all the AI companies, do not share. Since their invention,
LLMs have manifested what are called emergent abilities, meaning abilities for
which LLMs are not trained, but that are learnt from the data. Another word
used in this context is zero-shot, referring to a model’s ability to perform a task
or make predictions on data it hasn’t seen before—without any task-specific
training. Suppose a model trained on images of animals has seen cats and
dogs, but never zebras. If it can correctly identify a zebra based on descriptions

154 Conclusions, Future Work and Algorethic

of what zebras look like (even without specific zebra images during training),
it’s performing zero-shot learning. The mainstream idea is that, given massive
data to train on, the LLMs systems will, at some point, manifest on its own the
ability to plan, and they will be able to perform planning as a zero-shot task.
In trying to achieve these abilities, AI companies will increase their energy-
and water-consumption even more, thus contributing even more to climate
change. Before employing this humongous amount of energies, we firstly
have to ask ourselves, as researchers, if these abilities can actually emerge.

It is not all bad. In the last three paragraphs I have presented the risks
that AI, and especially planning, can have in a belligerent, lonely and burning
world. While these problems concern me, AI has proven in the last years to be
an incredible technology which could be very helpful in solving many prob-
lems that the world is facing. In the application of planning proposed in this
thesis, the In-Station Train Dispatching Problem, the use of AI could greatly
benefit the life of passengers, where, in a world of 8 billion people, railway
traffic is becoming more and more congested, and delays are nowadays very
common. In Medicine, thanks to AI, new, break-through discoveries can be
made in the cure for cancer or other illnesses. AI can help alleviate the burden
of very fatiguing jobs, and make work even more productive. In agriculture
and farming, the use of AI could reduce waste and help in producing even
more food with less water and energy consumption.

“After all, we cannot doubt that the advent of artificial intelligence
represents a true cognitive-industrial revolution, which will con-
tribute to the creation of a new social system characterised by
complex epochal transformations. For example, artificial intel-
ligence could enable a democratization of access to knowledge,
the exponential advancement of scientific research and the pos-
sibility of giving demanding and arduous work to machines. Yet
at the same time, it could bring with it a greater injustice be-
tween advanced and developing nations or between dominant
and oppressed social classes, raising the dangerous possibility that
a “throwaway culture” be preferred to a “culture of encounter”.
(Francis [2024a])

7.2 Algorethic of Planning 155

What has been done? In recent years, several policies and initiatives have
been put in place to try to regulate AI so that its great power can actually
benefit, rather than harm, society. I want to highlight two: the EU AI act and
the Rome Call for AI Ethics.

The AI Act, which we briefly covered in previous paragraphs, is a European
Union Law which has been presented in February 2024 and will be put into
force in 2025. Its main contribution is the categorization of AI systems into
four levels of risk: (i) Unacceptable Risk : AI that poses serious threats to
safety or fundamental rights and are thus banned, (ii) High-Risk : Includes
applications in critical areas like healthcare, law enforcement, and employ-
ment, (iii) Limited Risk : AI systems that require transparency measures, such
as chatbots, where users must be informed they are interacting with, and
(iv) Minimal Risk, such as video games or spam filters, which have few or no
additional regulatory requirements. Unacceptable Risk includes AI for social
scoring, certain types of surveillance, and subliminal manipulation. High-risk
AI systems must undergo rigorous assessments before deployment. Devel-
opers must document the AI ’s design, training data, and testing results. AI

systems must also provide explanations of their decisions, ensuring that they
are transparent and accountable. The Act mandates human oversight, espe-
cially in high-stakes decisions (e.g., healthcare diagnostics, judicial decisions).
Human operators must have the ability to intervene or override AI decisions
in certain contexts. In my opinion, the great force of this act stands in the
mandatory steps that will be required before deploying AI technologies in
High-Risk areas, forcing researchers and stakeholders to stop and think about
the consequences of their work. Moreover, the act will produce benchmarks
and test suites to evaluate the standards of the products, giving to consumer
certifications of the goodness of the software they are using.

The Rome Call for AI Ethics is an initiative launched by the Vatican in
2020 to promote ethical standards in artificial intelligence. Spearheaded by
the Pontifical Academy for Life, leaded by Mons. Vincenzo Paglia, it brings
together religious leaders, tech companies, and governments to advocate
for a human-centered approach to AI development. The idea for this Rome
Call was born from a meeting between Microsoft President Brad Smith and
Mons. Paglia, proposed by the former, to discuss the rapid growth that AI

was experiencing and the desperate need for guidance on how to design it

156 Conclusions, Future Work and Algorethic

ethically [Paglia, 2024]. This meeting spurred an interest in other companies,
like IBM. As stated earlier, the fact that big companies decided to turn to a
religious institution, like the Vatican, to guide them towards an ethical way
for AI, must be taken seriously, and unfortunately means that no other actor in
the world, including universities and research institutions, is making enough
efforts in considering the ethical implication of AI and is so much concerned
with the impacts on human life.

The key principles of the Rome call are

1. Transparency: AI systems should be designed in a way that makes them
understandable and transparent to the people who use them. This
includes making AI decisions explainable to ensure public trust.

2. Inclusion: The initiative advocates for ensuring that AI technology
is accessible and beneficial to all, regardless of socioeconomic status,
geographic location, or background.

3. Accountability: All stakeholders, including governments, companies,
and developers, are called to work collaboratively in the ethical gover-
nance of AI. This includes ensuring accountability for the consequences
of AI deployment.

4. Responsibility: Organizations and developers are encouraged to take
responsibility for their AI systems, especially in high-stakes areas like
healthcare, justice, and labor. They should strive to prevent harm and
protect vulnerable populations.

5. Impartiality: AI should be developed and used without bias, fostering
fairness and avoiding discrimination. This principle is especially rele-
vant to ensure that AI does not reinforce or exacerbate existing social
inequalities.

6. Security and Privacy: The Rome Call stresses the importance of securing
AI systems to protect personal data and privacy, which is seen as essential
to respect individual rights and maintain public trust.

What can we do as researchers? As stated in the motives, I believe that
researchers, even if theoretical, have the responsibilities to feel these problems

7.2 Algorethic of Planning 157

burning. As engineers and scientists, we are used to feeling the urgency to do
things, and, unfortunately, to rapidly dismiss problems when it appears that
nothing can be done, or the problem seems too huge to handle. For building
an algorethic, an ethic for algorithms, we must start not by doing but by
caring. Caring about the problems, as the three I have mentioned before, is
what starts the internal movements that make us ask questions and search
for answers. To help improve the world with our technologies, we need to
actually live in the world, with its complexity and its difficulties. We must
therefore always start thinking about the consequences of our work, siding
with the marginalized – the poor, the elderly, the sick, and children – and
making them central to our technologies, rather than treating them as special
cases.

“In the quest for normative models that can provide ethical guid-
ance to developers of digital technologies, it is indispensable to
identify the human values that should undergird the efforts of
societies to formulate, adopt and enforce much-needed regulatory
frameworks. The work of drafting ethical guidelines for produc-
ing forms of artificial intelligence can hardly prescind from the
consideration of deeper issues regarding the meaning of human
existence, the protection of fundamental human rights and the
pursuit of justice and peace. This process of ethical and juridical
discernment can prove a precious opportunity for shared reflec-
tion on the role that technology should play in our individual
and communal lives, and how its use can contribute to the cre-
ation of a more equitable and humane world. For this reason, in
debates about the regulation of artificial intelligence, the voices
of all stakeholders should be taken into account, including the
poor, the powerless and others who often go unheard in global
decision-making processes.” (Francis [2024b])

References

Alaboud, F. K. and Coles, A. (2019). Personalized Medication and Activity
Planning in PDDL+. In Benton, J., Lipovetzky, N., Onaindia, E., Smith, D. E.,
and Srivastava, S., editors, Proceedings of the Twenty-Ninth International
Conference on Automated Planning and Scheduling, ICAPS 2019, Berkeley,
CA, USA, July 11-15, 2019, pages 492–500. AAAI Press.

Bacchus, F. (2001). The AIPS ’00 Planning Competition. AI Mag., 22(3):47–
56.

Balyo, T. (2013). Relaxing the Relaxed Exist-Step Parallel Planning Semantics.
In 25th IEEE International Conference on Tools with Artificial Intelligence,
ICTAI 2013, Herndon, VA, USA, November 4-6, 2013, pages 865–871. IEEE
Computer Society.

Barrett, C., Fontaine, P., and Tinelli, C. (2016). The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org. Accessed: 2024-01-06.

Benanti, P. (2018). Oracoli: tra algoretica e algocrazia. Collassi. Luca Sossella
editore, Rome.

Benanti, P. (2023). The urgency of an algorethics. Discov. Artif. Intell., 3(1).

Benton, J., Coles, A. J., and Coles, A. (2012). Temporal Planning with
Preferences and Time-Dependent Continuous Costs. In Proceedings of
the Twenty-Second International Conference on Automated Planning and
Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil, June 25-19, 2012. AAAI.

Bercher, P., Haslum, P., and Muise, C. (2024). A survey on plan optimization.
In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, IJCAI 2024, Jeju, South Korea, August 3-9, 2024, pages 7941–
7950. ijcai.org.

Bofill, M., Espasa, J., and Villaret, M. (2016). The RANTANPLAN planner:
system description. Knowl. Eng. Rev., 31(5):452–464.

Bofill, M., Espasa, J., and Villaret, M. (2017). Relaxed Exists-Step Plans in
Planning as SMT. In Sierra, C., editor, Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, pages 563–570. ijcai.org.

www.SMT-LIB.org

References 159

Boleto, G., Oneto, L., Cardellini, M., Maratea, M., Vallati, M., Canepa, R., and
Anguita, D. (2021). In-Station Train Movements Prediction: from Shallow
to Deep Multi Scale Models. In 29th European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning, ESANN
2021, Online event (Bruges, Belgium), October 6-8, 2021.

Bonet, B. and Geffner, H. (2001). Planning as heuristic search. Artif. Intell.,
129(1-2):5–33.

Brand, S., Bäck, T., and Laarman, A. (2023). A Decision Diagram Operation
for Reachability. In Chechik, M., Katoen, J., and Leucker, M., editors, Formal
Methods - 25th International Symposium, FM 2023, Lübeck, Germany, March
6-10, 2023, Proceedings, volume 14000 of Lecture Notes in Computer Science,
pages 514–532. Springer.

Bryant, R. E. (1985). Symbolic manipulation of Boolean functions using a
graphical representation. In Ofek, H. and O’Neill, L. A., editors, Proceedings
of the 22nd ACM/IEEE conference on Design automation, DAC 1985, Las
Vegas, Nevada, USA, 1985, pages 688–694. ACM.

Bryant, R. E. (1986). Graph-Based Algorithms for Boolean Function Manipu-
lation. IEEE Trans. Computers, 35(8):677–691.

Bryant, R. E. (1992). Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams. ACM Comput. Surv., 24(3):293–318.

Bryce, D., Gao, S., Musliner, D. J., and Goldman, R. P. (2015). Smt-based
nonlinear PDDL+ planning. In Bonet, B. and Koenig, S., editors, Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA, pages 3247–3253. AAAI Press.

Buchanan, B. G. (2005). A (very) brief history of artificial intelligence. AI
Mag., 26(4):53–60.

Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang, L. J.
(1992). Symbolic Model Checking: 10ˆ20 States and Beyond. Inf. Comput.,
98(2):142–170.

Bylander, T. (1994). The Computational Complexity of Propositional STRIPS
Planning. Artif. Intell., 69(1-2):165–204.

Cabodi, G., Camurati, P., Lavagno, L., and Quer, S. (1997). Disjunctive
partitioning and partial iterative squaring: An effective approach for sym-
bolic traversal of large circuits. In Yoffa, E. J., Micheli, G. D., and Rabaey,
J. M., editors, Proceedings of the 34st Conference on Design Automation,
Anaheim, California, USA, Anaheim Convention Center, June 9-13, 1997,
pages 728–733. ACM Press.

Cardellini, M., Dodaro, C., Maratea, M., and Vallati, M. (2024a). Optimising
dynamic traffic distribution for urban networks with answer set program-
ming. Theory and Practice of Logic Programming, page 1–19.

160 References

Cardellini, M. and Giunchiglia, E. (2025). Temporal Numeric Planning With
Patterns. In Thirty-Ninth AAAI Conference on Artificial Intelligence, AAAI
2025, February 25 - March 4, 2025, Philadelphia, Pennsylvania, USA. AAAI
Press.

Cardellini, M., Giunchiglia, E., and Maratea, M. (2024b). Symbolic Numeric
Planning with Patterns. In Wooldridge, M. J., Dy, J. G., and Natarajan, S.,
editors, Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024,
Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence,
IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial
Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, pages
20070–20077. AAAI Press.

Cardellini, M., Maratea, M., Percassi, F., Scala, E., and Vallati, M. (2024c).
Taming discretised PDDL+ through multiple discretisations. In Bernardini,
S. and Muise, C., editors, Proceedings of the Thirty-Fourth International Con-
ference on Automated Planning and Scheduling, ICAPS 2024, Banff, Alberta,
Canada, June 1-6, 2024, pages 59–67. AAAI Press.

Cardellini, M., Maratea, M., Vallati, M., Boleto, G., and Oneto, L. (2021a). A
Planning-based Approach for In-Station Train Dispatching. In Ma, H. and
Serina, I., editors, Proceedings of the Fourteenth International Symposium on
Combinatorial Search, SOCS 2021, Virtual Conference [Jinan, China], July
26-30, 2021, pages 156–158. AAAI Press.

Cardellini, M., Maratea, M., Vallati, M., Boleto, G., and Oneto, L. (2021b). An
Efficient Hybrid Planning Framework for In-Station Train Dispatching. In
Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V. V., Dongarra, J. J.,
and Sloot, P. M. A., editors, Computational Science - ICCS 2021 - 21st
International Conference, Krakow, Poland, June 16-18, 2021, Proceedings,
Part I, volume 12742 of Lecture Notes in Computer Science, pages 168–182.
Springer.

Cardellini, M., Maratea, M., Vallati, M., Boleto, G., and Oneto, L. (2021c). In-
Station Train Dispatching: A PDDL+ Planning Approach. In Biundo, S., Do,
M., Goldman, R., Katz, M., Yang, Q., and Zhuo, H. H., editors, Proceedings
of the Thirty-First International Conference on Automated Planning and
Scheduling, ICAPS 2021, Guangzhou, China (virtual), August 2-13, 2021,
pages 450–458. AAAI Press.

Cashmore, M., Fox, M., Long, D., and Magazzeni, D. (2016). A Compilation
of the Full PDDL+ Language into SMT. In Coles, A. J., Coles, A., Edelkamp,
S., Magazzeni, D., and Sanner, S., editors, Proceedings of the Twenty-Sixth
International Conference on Automated Planning and Scheduling, ICAPS 2016,
London, UK, June 12-17, 2016, pages 79–87. AAAI Press.

Cashmore, M., Magazzeni, D., and Zehtabi, P. (2020). Planning for Hybrid
Systems via Satisfiability Modulo Theories. J. Artif. Intell. Res., 67:235–283.

References 161

Ciardo, G., Lüttgen, G., and Siminiceanu, R. (2001). Saturation: An Efficient
Iteration Strategy for Symbolic State-Space Generation. In Margaria, T.
and Yi, W., editors, Tools and Algorithms for the Construction and Analysis
of Systems, 7th International Conference, TACAS 2001 Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2001
Genova, Italy, April 2-6, 2001, Proceedings, volume 2031 of Lecture Notes in
Computer Science, pages 328–342. Springer.

Cimatti, A., Griggio, A., Schaafsma, B. J., and Sebastiani, R. (2013). The
mathsat5 SMT solver. In Piterman, N. and Smolka, S. A., editors, Tools and
Algorithms for the Construction and Analysis of Systems - 19th International
Conference, TACAS 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24,
2013. Proceedings, volume 7795 of Lecture Notes in Computer Science, pages
93–107. Springer.

Clarke, E. M., McMillan, K. L., Campos, S. V. A., and Hartonas-Garmhausen,
V. (1996). Symbolic Model Checking. In Alur, R. and Henzinger, T. A.,
editors, Computer Aided Verification, 8th International Conference, CAV ’96,
New Brunswick, NJ, USA, July 31 - August 3, 1996, Proceedings, volume
1102 of Lecture Notes in Computer Science, pages 419–427. Springer.

Coles, A., Coles, A., Martinez, M., and Sidiropoulos, P. (2018). Interna-
tional Planning Competition 2018 - Temporal Track. https://bitbucket.org/
ipc2018-temporal/domains/src/master/. Accessed: 2023-08-01.

Corrêa, A. B., Frances, G., Hecher, M., Longo, D. M., and Seipp, J. (2023).
Levitron: Combining Ground and Lifted Planning. Tenth International
Planning Competition (IPC-10): Planner Abstracts.

Corrêa, A. B., Francès, G., Hecher, M., Longo, D. M., and Seipp, J. (2023).
Scorpion Maidu: Width Search in the Scorpion Planning System. In Tenth
International Planning Competition (IPC-10): Planner Abstracts.

Council of European Union (2024a). Article 3: Definitions | EU Artificial
Intelligence Act. https://artificialintelligenceact.eu/article/3/. [Accessed
01-11-2024].

Council of European Union (2024b). Recital 12 | EU Artificial Intelligence Act.
https://artificialintelligenceact.eu/recital/12/. [Accessed 01-11-2024].

Cushing, W., Kambhampati, S., Mausam, and Weld, D. S. (2007). When is
Temporal Planning Really Temporal? In IJCAI 2007, Proceedings of the 20th
International Joint Conference on Artificial Intelligence, Hyderabad, India,
January 6-12, 2007, pages 1852–1859.

Daniele, M., Traverso, P., and Vardi, M. Y. (1999). Strong Cyclic Planning
Revisited. In Biundo, S. and Fox, M., editors, Recent Advances in AI Planning,
5th European Conference on Planning, ECP’99, Durham, UK, September 8-10,

https://bitbucket.org/ipc2018-temporal/domains/src/master/
https://bitbucket.org/ipc2018-temporal/domains/src/master/
https://artificialintelligenceact.eu/article/3/
https://artificialintelligenceact.eu/recital/12/

162 References

1999, Proceedings, volume 1809 of Lecture Notes in Computer Science, pages
35–48. Springer.

de Moura, L. M. and Bjørner, N. S. (2008). Z3: An Efficient SMT Solver.
In Ramakrishnan, C. R. and Rehof, J., editors, Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6,
2008. Proceedings, volume 4963 of Lecture Notes in Computer Science, pages
337–340. Springer.

Drexler, D. (2023). Vanir: Learning and Executing Width-based Hierarchical
Policies. Tenth International Planning Competition (IPC-10) Learning Track:
Planner Abstracts.

Edelkamp, S. and Reffel, F. (1998). Obdds in heuristic search. In Herzog, O.
and Günter, A., editors, KI-98: Advances in Artificial Intelligence, 22nd An-
nual German Conference on Artificial Intelligence, Bremen, Germany, Septem-
ber 15-17, 1998, Proceedings, volume 1504 of Lecture Notes in Computer
Science, pages 81–92. Springer.

Eyerich, P., Mattmüller, R., and Röger, G. (2012). Using the Context-Enhanced
Additive Heuristic for Temporal and Numeric Planning. In Towards Service
Robots for Everyday Environments - Recent Advances in Designing Service
Robots for Complex Tasks in Everyday Environments, volume 76 of Springer
Tracts in Advanced Robotics, pages 49–64. Springer.

Fikes, R. and Nilsson, N. J. (1971). STRIPS: A New Approach to the Applica-
tion of Theorem Proving to Problem Solving. Artif. Intell., 2(3/4):189–208.

Fox, M., Howey, R., and Long, D. (2005). Validating Plans in the Context
of Processes and Exogenous Events. In Veloso, M. M. and Kambhampati,
S., editors, Proceedings, The Twentieth National Conference on Artificial
Intelligence and the Seventeenth Innovative Applications of Artificial Intel-
ligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pages
1151–1156. AAAI Press / The MIT Press.

Fox, M. and Long, D. (2003). PDDL2.1: An Extension to PDDL for Expressing
Temporal Planning Domains. J. Artif. Intell. Res., 20:61–124.

Fox, M. and Long, D. (2006). Modelling Mixed Discrete-Continuous Domains
for Planning. J. Artif. Intell. Res., 27:235–297.

Francis (2019). Address to Participants in the Congress on
“Child Dignity in the Digital World”. https://www.vatican.va/
content/francesco/en/speeches/2019/november/documents/papa-
francesco_20191114_convegno-child%20dignity.html. Accessed: 2024-11-
01.

https://www.vatican.va/content/francesco/en/speeches/2019/november/documents/papa-francesco_20191114_convegno-child%20dignity.html
https://www.vatican.va/content/francesco/en/speeches/2019/november/documents/papa-francesco_20191114_convegno-child%20dignity.html
https://www.vatican.va/content/francesco/en/speeches/2019/november/documents/papa-francesco_20191114_convegno-child%20dignity.html

References 163

Francis (2024a). Address Of Pope Francis at the G7 Session on Artificial In-
telligence. https://www.vatican.va/content/francesco/en/speeches/2024/
june/documents/20240614-g7-intelligenza-artificiale.html. Accessed:
2024-11-01.

Francis (2024b). Artificial Intelligence and Peace. https://www.vatican.va/
content/francesco/en/messages/peace/documents/20231208-messaggio-
57giornatamondiale-pace2024.html. Accessed: 2024-11-01.

Gazen, B. C. and Knoblock, C. A. (1997). Combining the Expressivity of
UCPOP with the Efficiency of Graphplan. In Steel, S. and Alami, R., editors,
Recent Advances in AI Planning, 4th European Conference on Planning, ECP’97,
Toulouse, France, September 24-26, 1997, Proceedings, volume 1348 of
Lecture Notes in Computer Science, pages 221–233. Springer.

Gebser, M., Kaminski, R., König, A., and Schaub, T. (2011). Advances in gringo
Series 3. In Delgrande, J. P. and Faber, W., editors, Logic Programming
and Nonmonotonic Reasoning - 11th International Conference, LPNMR 2011,
Vancouver, Canada, May 16-19, 2011. Proceedings, volume 6645 of Lecture
Notes in Computer Science, pages 345–351. Springer.

Geldenhuys, J. and Valmari, A. (2001). Techniques for Smaller Intermediary
BDDs. In Larsen, K. G. and Nielsen, M., editors, CONCUR 2001 - Concurrency
Theory, 12th International Conference, Aalborg, Denmark, August 20-25,
2001, Proceedings, volume 2154 of Lecture Notes in Computer Science, pages
233–247. Springer.

Gelfond, M. and Lifschitz, V. (1991). Classical Negation in Logic Programs
and Disjunctive Databases. New Gener. Comput., 9(3/4):365–386.

Gerevini, A., Saetti, A., and Serina, I. (2010). Temporal Planning with
Problems Requiring Concurrency through Action Graphs and Local Search.
In Proceedings of the 20th International Conference on Automated Planning
and Scheduling, ICAPS 2010, Toronto, Ontario, Canada, May 12-16, 2010,
pages 226–229. AAAI.

Gerevini, A. E., Percassi, F., and Scala, E. (2024). An Effective Polynomial
Technique for Compiling Conditional Effects Away. In Wooldridge, M. J.,
Dy, J. G., and Natarajan, S., editors, Thirty-Eighth AAAI Conference on
Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on
Educational Advances in Artificial Intelligence, EAAI 2014, February 20-27,
2024, Vancouver, Canada, pages 20104–20112. AAAI Press.

Gigante, N., Micheli, A., Montanari, A., and Scala, E. (2022). Decidability
and complexity of action-based temporal planning over dense time. Artif.
Intell., 307:103686.

https://www.vatican.va/content/francesco/en/speeches/2024/june/documents/20240614-g7-intelligenza-artificiale.html
https://www.vatican.va/content/francesco/en/speeches/2024/june/documents/20240614-g7-intelligenza-artificiale.html
https://www.vatican.va/content/francesco/en/messages/peace/documents/20231208-messaggio-57giornatamondiale-pace2024.html
https://www.vatican.va/content/francesco/en/messages/peace/documents/20231208-messaggio-57giornatamondiale-pace2024.html
https://www.vatican.va/content/francesco/en/messages/peace/documents/20231208-messaggio-57giornatamondiale-pace2024.html

164 References

Gigante, N. and Scala, E. (2023). On the Compilability of Bounded Numeric
Planning. In Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR,
China, pages 5341–5349. ijcai.org.

Giunchiglia, E. and Maratea, M. (2007). Planning as satisfiability with pref-
erences. In Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada, pages
987–992. AAAI Press.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A. C., and Bengio, Y. (2014). Generative adversarial networks.
CoRR, abs/1406.2661.

Guo, R., Vallati, M., Wang, Y., Zhang, H., Chen, Y., and Wang, F. (2024). Sus-
tainability opportunities and ethical challenges of ai-enabled connected au-
tonomous vehicles routing in urban areas. IEEE Trans. Intell. Veh., 9(1):55–
58.

Haslum, P., Lipovetzky, N., Magazzeni, D., and Muise, C. (2019). An Intro-
duction to the Planning Domain Definition Language. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers.

Haugeland, J. (1989). Artificial intelligence - the very idea. MIT Press.

Helmert, M. (2002). Decidability and Undecidability Results for Planning
with Numerical State Variables. In Ghallab, M., Hertzberg, J., and Traverso,
P., editors, Proceedings of the Sixth International Conference on Artificial
Intelligence Planning Systems, April 23-27, 2002, Toulouse, France, pages
44–53. AAAI.

Helmert, M. and Domshlak, C. (2009). Landmarks, critical paths and abstrac-
tions: What’s the difference anyway? In Gerevini, A., Howe, A. E., Cesta, A.,
and Refanidis, I., editors, Proceedings of the 19th International Conference
on Automated Planning and Scheduling, ICAPS 2009, Thessaloniki, Greece,
September 19-23, 2009. AAAI.

Hoffmann, J. (2003). The Metric-FF Planning System: Translating ”Ignoring
Delete Lists” to Numeric State Variables. J. Artif. Intell. Res., 20:291–341.

Höller, D. and Behnke, G. (2022). Encoding Lifted Classical Planning in
Propositional Logic. In Kumar, A., Thiébaux, S., Varakantham, P., and Yeoh,
W., editors, Proceedings of the Thirty-Second International Conference on
Automated Planning and Scheduling, ICAPS 2022, Singapore (virtual), June
13-24, 2022, pages 134–144. AAAI Press.

Holt-Lunstad, J., Smith, T. B., Baker, M., Harris, T., and Stephenson, D.
(2015). Loneliness and social isolation as risk factors for mortality: a
meta-analytic review. Perspectives on psychological science, 10(2):227–237.

References 165

Kahneman, D. (2011). Thinking, Fast and Slow. Farrar, Straus and Giroux,
New York.

Kambhampati, S. (2024). Can large language models reason and plan? CoRR,
abs/2403.04121.

Kambhampati, S., Valmeekam, K., Guan, L., Verma, M., Stechly, K., Bhambri,
S., Saldyt, L., and Murthy, A. (2024). Position: Llms can’t plan, but
can help planning in llm-modulo frameworks. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net.

Katz, M. (2019). Red-Black Heuristics for Planning Tasks with Conditional
Effects. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019, pages 7619–7626. AAAI Press.

Kautz, H. A., McAllester, D. A., and Selman, B. (1996). Encoding Plans
in Propositional Logic. In Aiello, L. C., Doyle, J., and Shapiro, S. C.,
editors, Proceedings of the Fifth International Conference on Principles of
Knowledge Representation and Reasoning (KR’96), Cambridge, Massachusetts,
USA, November 5-8, 1996, pages 374–384. Morgan Kaufmann.

Kautz, H. A. and Selman, B. (1992). Planning as Satisfiability. In Neumann, B.,
editor, 10th European Conference on Artificial Intelligence, ECAI 92, Vienna,
Austria, August 3-7, 1992. Proceedings, pages 359–363. John Wiley and
Sons.

Kautz, H. A. and Selman, B. (1996). Pushing the Envelope: Planning, Proposi-
tional Logic and Stochastic Search. In Clancey, W. J. and Weld, D. S., editors,
Proceedings of the Thirteenth National Conference on Artificial Intelligence
and Eighth Innovative Applications of Artificial Intelligence Conference, AAAI
96, IAAI 96, Portland, Oregon, USA, August 4-8, 1996, Volume 2, pages
1194–1201. AAAI Press / The MIT Press.

Kiam, J. J., Scala, E., Jávega, M. R., and Schulte, A. (2020). An AI-Based
Planning Framework for HAPS in a Time-Varying Environment. In Beck,
J. C., Buffet, O., Hoffmann, J., Karpas, E., and Sohrabi, S., editors, Pro-
ceedings of the Thirtieth International Conference on Automated Planning
and Scheduling, Nancy, France, October 26-30, 2020, pages 412–420. AAAI
Press.

Kissmann, P. and Hoffmann, J. (2013). What’s in It for My BDD? On Causal
Graphs and Variable Orders in Planning. In Borrajo, D., Kambhampati, S.,
Oddi, A., and Fratini, S., editors, Proceedings of the Twenty-Third Interna-
tional Conference on Automated Planning and Scheduling, ICAPS 2013, Rome,
Italy, June 10-14, 2013. AAAI.

166 References

Kissmann, P. and Hoffmann, J. (2014). BDD Ordering Heuristics for Classical
Planning. J. Artif. Intell. Res., 51:779–804.

Kuroiwa, R., Shleyfman, A., and Beck, J. C. (2022). LM-Cut Heuristics for
Optimal Linear Numeric Planning. In Kumar, A., Thiébaux, S., Varakantham,
P., and Yeoh, W., editors, Proceedings of the Thirty-Second International
Conference on Automated Planning and Scheduling, ICAPS 2022, Singapore
(virtual), June 13-24, 2022, pages 203–212. AAAI Press.

Lauer, P., Torralba, Á., Fiser, D., Höller, D., Wichlacz, J., and Hoffmann, J.
(2021). Polynomial-Time in PDDL Input Size: Making the Delete Relaxation
Feasible for Lifted Planning. In Zhou, Z., editor, Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual
Event / Montreal, Canada, 19-27 August 2021, pages 4119–4126. ijcai.org.

Leofante, F., Giunchiglia, E., Ábrahám, E., and Tacchella, A. (2020). Optimal
Planning Modulo Theories. In Bessiere, C., editor, Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020,
pages 4128–4134. ijcai.org.

Lin, B., Touati, H. J., and Newton, A. R. (1990). Don’t Care Minimization
of Multi-Level Sequential Logic Networks. In IEEE/ACM International
Conference on Computer-Aided Design, ICCAD 1990, Santa Clara, CA, USA,
November 11-15, 1990. Digest of Technical Papers, pages 414–417. IEEE
Computer Society.

Manyika, J. and Bughin, J. (2019). The Coming AI Spring.
https://www.project-syndicate.org/commentary/artificial-intelligence-
spring-is-coming-by-james-manyika-and-jacques-bughin-2019-10. [Ac-
cessed 01-11-2024].

Matsunaga, Y., McGeer, P. C., and Brayton, R. K. (1993). On Computing the
Transitive Closure of a State Transition Relation. In Dunlop, A. E., editor,
Proceedings of the 30th Design Automation Conference. Dallas, Texas, USA,
June 14-18, 1993, pages 260–265. ACM Press.

McCarthy, J. and Hayes, P. (1969). Some Philosophical Problems From the
Standpoint of Artificial Intelligence. In Meltzer, B. and Michie, D., editors,
Machine Intelligence 4, pages 463–502. Edinburgh University Press.

McDermott, D. V. (2000). The 1998 AI Planning Systems Competition. AI
Mag., 21(2):35–55.

McGeer, P. C. (1989). On the interaction of functional and timing behaviour of
combinational logic circuits. University of California, Berkeley.

Muise, C. J., McIlraith, S. A., and Beck, J. C. (2012). Improved Non-
Deterministic Planning by Exploiting State Relevance. In McCluskey, L.,

https://www.project-syndicate.org/commentary/artificial-intelligence-spring-is-coming-by-james-manyika-and-jacques-bughin-2019-10
https://www.project-syndicate.org/commentary/artificial-intelligence-spring-is-coming-by-james-manyika-and-jacques-bughin-2019-10

References 167

Williams, B. C., Silva, J. R., and Bonet, B., editors, Proceedings of the Twenty-
Second International Conference on Automated Planning and Scheduling,
ICAPS 2012, Atibaia, São Paulo, Brazil, June 25-19, 2012. AAAI.

Nebel, B. (2000). On the Compilability and Expressive Power of Propositional
Planning Formalisms. J. Artif. Intell. Res., 12:271–315.

Office of the Surgeon General (2023). Our epidemic of loneliness and iso-
lation: The us surgeon general’s advisory on the healing effects of social
connection and community [internet].

Paglia, V. (2024). L’algoritmo della vita: etica e intelligenza artificiale. Piemme,
Milano, i edizione edition.

Panjkovic, S. and Micheli, A. (2023). Expressive Optimal Temporal Plan-
ning via Optimization Modulo Theory. In Thirty-Seventh AAAI Conference
on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on
Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC,
USA, February 7-14, 2023, pages 12095–12102. AAAI Press.

Panjkovic, S. and Micheli, A. (2024). Abstract Action Scheduling for Op-
timal Temporal Planning via OMT. In Wooldridge, M. J., Dy, J. G., and
Natarajan, S., editors, Thirty-Eighth AAAI Conference on Artificial Intelligence,
AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in
Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada,
pages 20222–20229. AAAI Press.

Penna, G. D., Magazzeni, D., and Mercorio, F. (2012). A universal planning
system for hybrid domains. Appl. Intell., 36(4):932–959.

Percassi, F., Scala, E., and Vallati, M. (2023a). A Practical Approach to
Discretised PDDL+ Problems by Translation to Numeric Planning. J. Artif.
Intell. Res., 76:115–162.

Percassi, F., Scala, E., and Vallati, M. (2023b). A Practical Approach to
Discretised PDDL+ Problems by Translation to Numeric Planning. J. Artif.
Intell. Res., 76:115–162.

Piotrowski, W. M., Fox, M., Long, D., Magazzeni, D., and Mercorio, F. (2016).
Heuristic planning for PDDL+ domains. In Kambhampati, S., editor, Pro-
ceedings of the Twenty-Fifth International Joint Conference on Artificial Intel-
ligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages 3213–3219.
IJCAI/AAAI Press.

Rankooh, M. F. and Ghassem-Sani, G. (2015). ITSAT: An Efficient SAT-Based
Temporal Planner. J. Artif. Intell. Res., 53:541–632.

168 References

Rete Ferroviaria Italiana (RFI) (2023). La Rete Oggi. Accessed: March 18,
2024.

Rintanen, J. (2007). Complexity of Concurrent Temporal Planning. In Proceed-
ings of the Seventeenth International Conference on Automated Planning and
Scheduling, ICAPS 2007, Providence, Rhode Island, USA, September 22-26,
2007, pages 280–287. AAAI.

Rintanen, J. (2011). Heuristics for Planning with SAT and Expressive Action
Definitions. In Bacchus, F., Domshlak, C., Edelkamp, S., and Helmert,
M., editors, Proceedings of the 21st International Conference on Automated
Planning and Scheduling, ICAPS 2011, Freiburg, Germany June 11-16, 2011.
AAAI.

Rintanen, J. (2015). Models of Action Concurrency in Temporal Planning. In
Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages
1659–1665. AAAI Press.

Rintanen, J. (2017). Temporal Planning with Clock-Based SMT Encodings. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages
743–749. ijcai.org.

Rintanen, J., Heljanko, K., and Niemelä, I. (2006). Planning as satisfiability:
parallel plans and algorithms for plan search. Artif. Intell., 170(12-13):1031–
1080.

Röger, G., Pommerening, F., and Helmert, M. (2014). Optimal Planning in the
Presence of Conditional Effects: Extending LM-Cut with Context Splitting.
In Schaub, T., Friedrich, G., and O’Sullivan, B., editors, ECAI 2014 - 21st
European Conference on Artificial Intelligence, 18-22 August 2014, Prague,
Czech Republic - Including Prestigious Applications of Intelligent Systems (PAIS
2014), volume 263 of Frontiers in Artificial Intelligence and Applications,
pages 765–770. IOS Press.

Russell, S. and Norvig, P. (2020). Artificial Intelligence: A Modern Approach
(4th Edition). Pearson.

Scala, E. and Gerevini, A. E. (2020). An Introduction to Numeric Planning -
Representation and Search Algorithms. In ICAPS 2020 - Summer School.

Scala, E., Haslum, P., and Thiébaux, S. (2016a). Heuristics for Numeric
Planning via Subgoaling. In Kambhampati, S., editor, Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI
2016, New York, NY, USA, 9-15 July 2016, pages 3228–3234. IJCAI/AAAI
Press.

References 169

Scala, E., Haslum, P., Thiébaux, S., and Ramírez, M. (2016b). Interval-Based
Relaxation for General Numeric Planning. In Kaminka, G. A., Fox, M.,
Bouquet, P., Hüllermeier, E., Dignum, V., Dignum, F., and van Harmelen, F.,
editors, ECAI 2016 - 22nd European Conference on Artificial Intelligence, 29
August-2 September 2016, The Hague, The Netherlands - Including Prestigious
Applications of Artificial Intelligence (PAIS 2016), volume 285 of Frontiers in
Artificial Intelligence and Applications, pages 655–663. IOS Press.

Scala, E., Haslum, P., Thiébaux, S., and Ramírez, M. (2016c). Interval-Based
Relaxation for General Numeric Planning. In Kaminka, G. A., Fox, M.,
Bouquet, P., Hüllermeier, E., Dignum, V., Dignum, F., and van Harmelen, F.,
editors, ECAI 2016 - 22nd European Conference on Artificial Intelligence, 29
August-2 September 2016, The Hague, The Netherlands - Including Prestigious
Applications of Artificial Intelligence (PAIS 2016), volume 285 of Frontiers in
Artificial Intelligence and Applications, pages 655–663. IOS Press.

Scala, E., Ramírez, M., Haslum, P., and Thiébaux, S. (2016d). Numeric
Planning with Disjunctive Global Constraints via SMT. In Coles, A. J.,
Coles, A., Edelkamp, S., Magazzeni, D., and Sanner, S., editors, Proceedings
of the Twenty-Sixth International Conference on Automated Planning and
Scheduling, ICAPS 2016, London, UK, June 12-17, 2016, pages 276–284.
AAAI Press.

Scala, E., Saetti, A., Serina, I., and Gerevini, A. E. (2020). Search-Guidance
Mechanisms for Numeric Planning Through Subgoaling Relaxation. In
Beck, J. C., Buffet, O., Hoffmann, J., Karpas, E., and Sohrabi, S., editors,
Proceedings of the Thirtieth International Conference on Automated Planning
and Scheduling, Nancy, France, October 26-30, 2020, pages 226–234. AAAI
Press.

Scala, E. and Vallati, M. (2021). Effective grounding for hybrid planning
problems represented in PDDL+. Knowl. Eng. Rev., 36:e9.

Shin, J. and Davis, E. (2004). Continuous Time in a SAT-Based Planner. In
McGuinness, D. L. and Ferguson, G., editors, Proceedings of the Nineteenth
National Conference on Artificial Intelligence, Sixteenth Conference on In-
novative Applications of Artificial Intelligence, July 25-29, 2004, San Jose,
California, USA, pages 531–536. AAAI Press / The MIT Press.

Shin, J. and Davis, E. (2005). Processes and continuous change in a SAT-based
planner. Artif. Intell., 166(1-2):194–253.

Sipser, M. (1997). Introduction to the theory of computation. PWS Publishing
Company.

Smith, D. E., Frank, J., and Cushing, W. (2008). The ANML language. In The
ICAPS-08 Workshop on Knowledge Engineering for Planning and Scheduling
(KEPS), volume 31.

170 References

Taitler, A., Alford, R., Espasa, J., Behnke, G., Fiser, D., Gimelfarb, M., Pom-
merening, F., Sanner, S., Scala, E., Schreiber, D., Segovia-Aguas, J., and
Seipp, J. (2024). The 2023 International Planning Competition. AI Mag.,
45(2):280–296.

Valentini, A., Micheli, A., and Cimatti, A. (2020). Temporal planning with
intermediate conditions and effects. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 9975–9982. AAAI Press.

Vallati, M., Magazzeni, D., Schutter, B. D., Chrpa, L., and McCluskey, T. L.
(2016). Efficient Macroscopic Urban Traffic Models for Reducing Conges-
tion: A PDDL+ Planning Approach. In Schuurmans, D. and Wellman, M. P.,
editors, Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA, pages 3188–3194. AAAI
Press.

Valmeekam, K., Stechly, K., and Kambhampati, S. (2024). Llms still can’t plan;
can lrms? A preliminary evaluation of openai’s o1 on planbench. CoRR,
abs/2409.13373.

van Dijk, T., Meijer, J., and van de Pol, J. (2019). Multi-core on-the-fly
saturation. In Vojnar, T. and Zhang, L., editors, Tools and Algorithms for
the Construction and Analysis of Systems - 25th International Conference,
TACAS 2019, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings, Part II, volume 11428 of Lecture Notes in Computer Science,
pages 58–75. Springer.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In Guyon,
I., von Luxburg, U., Bengio, S., Wallach, H. M., Fergus, R., Vishwanathan,
S. V. N., and Garnett, R., editors, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008.

Verma, P. and Tan, S. (2024). A bottle of water per email: the hidden envi-
ronmental costs of using AI chatbots. https://www.washingtonpost.com/
technology/2024/09/18/energy-ai-use-electricity-water-data-centers/.
[Accessed 03-11-2024].

Wehrle, M. and Rintanen, J. (2007). Planning as Satisfiability with Relaxed
∃-Step Plans. In Orgun, M. A. and Thornton, J., editors, AI 2007: Advances
in Artificial Intelligence, 20th Australian Joint Conference on Artificial Intelli-
gence, Gold Coast, Australia, December 2-6, 2007, Proceedings, volume 4830
of Lecture Notes in Computer Science, pages 244–253. Springer.

https://www.washingtonpost.com/technology/2024/09/18/energy-ai-use-electricity-water-data-centers/
https://www.washingtonpost.com/technology/2024/09/18/energy-ai-use-electricity-water-data-centers/

References 171

World Population Review (2024). Countries Currently at War.
https://worldpopulationreview.com/country-rankings/countries-
currently-at-war. [Accessed 02-11-2024].

Yoon, S. W., Fern, A., and Givan, R. (2007). FF-Replan: A Baseline for Prob-
abilistic Planning. In Boddy, M. S., Fox, M., and Thiébaux, S., editors,
Proceedings of the Seventeenth International Conference on Automated Plan-
ning and Scheduling, ICAPS 2007, Providence, Rhode Island, USA, September
22-26, 2007, page 352. AAAI.

https://worldpopulationreview.com/country-rankings/countries-currently-at-war
https://worldpopulationreview.com/country-rankings/countries-currently-at-war

Acknowledgements

Ringrazio,

• il Prof. Enrico Giunchiglia, per il suo impegno a tramandarmi la passione
per la ricerca e per la bellezza della matematica, per i suoi aforismi e
per guidarmi ogni giorno a essere un ricercatore migliore;

• il Prof. Marco Maratea, per i primi anni del mio percorso accademico
e del mio dottorato, per la sua guida incessante e il pensare sempre a
ciò che è migliore per me, per avermi fatto appassionare al mondo della
ricerca;

• il Prof. Mauro Vallati, per la sua grande conoscenza e capacità tecnica
negli ambiti applicativi, per la sua ospitalità ad Huddersfield, per la sua
generosa compagnia alle conferenze;

• i revisori Dott. Andrea Micheli e Dott. Nicola Gigante, per i loro utili
commenti, l’apprezzamento del mio lavoro e per la loro ricerca, che ha
motivato molte sezioni di questa tesi;

• i miei genitori, per avermi dato fiducia, per aver creduto in me, per
avermi cresciuto in una casa felice e per avermi donato la curiosità;

• il mio amore Emanuela, per il suo grande amore nei miei confronti e per
la altrettanto grande pazienza nel sopportare le mie distrazioni, per la
tranquillità e la serenità che ha portato nella mia vita e nel mio futuro;

• la Comunità di Sant’Egidio tutta, per avermi dato le parole che, in
piccolissima parte, ho cercato di trasmettere in Sezione 7.2 e per avermi
dato un orientamento nella vita;

References 173

• i ragazzi della Scuola della Pace: Besi, Hongbo, Albi, Gabri, Leon, Vilson,
Michi ed Entoni, per avermi insegnato cosa vuol dire mettersi dalla
parte dei piccoli;

• i nostri amici del Giro: Lancinè, Aldo, Abdel, Mousta e Doina, per il
vostro grande affetto e per la speranza che trasmettete;

• i miei amici di sempre: Davide, Elena e Picci, per la strada che abbiamo
fatto insieme e che continueremo a fare.

	List of Figures
	List of Tables
	List of Theorems
	List of Algorithms
	1 Introduction on Planning
	1.1 Planning
	1.2 Flavours of Planning
	1.3 Complexity of Planning
	1.3.1 Compilation Schemes

	1.4 Satisfiability Modulo Theory
	1.4.1 Satisfiability
	1.4.2 Theories

	1.5 Planning as Satisfiability
	1.6 Thesis Contribution

	2 spp in Classical and Numeric Planning
	2.1 Numeric Planning in PDDL2.1
	2.2 Symbolic Pattern Planning
	2.2.1 A Simple spp Procedure
	2.2.2 A Correct and Complete spp Encoding for Numeric Planning Problems
	2.2.3 Pattern Computation
	2.2.4 Plan Quality

	2.3 Relation to Planning as Satisfiability Encodings
	2.3.1 Rolled-up and Standard Encodings
	2.3.2 Relaxed-Relaxed exists R2E Encoding
	2.3.3 Relationships Among the Standard, Rolled-up, Relaxed-Relaxed Exists and Pattern Encodings

	2.4 Implementation and Experimental Analysis
	2.4.1 Impact of the Computing Pattern Procedure
	2.4.2 Quality of the Computed Plan
	2.4.3 Comparative Analysis with SOTA Symbolic Planners
	2.4.4 Comparative Analysis with SOTA Search-Based Planners
	2.4.5 Overall Comparative Analysis

	2.5 Conclusions and Future work
	2.5.1 Considerations on Classical Planning

	3 spp in Classical Planning with Conditional Effects
	3.1 Preliminaries
	3.1.1 Classical Planning Task with Conditional Effects
	3.1.2 Propositional Formulas and Binary Decision Diagrams

	3.2 Complexity of Rolling
	3.3 Rolling Actions with Conditional Effects
	3.3.1 Transition Functions and Transition Relations
	3.3.2 Computing the Transitive Closure

	3.4 The Transitive ≺-Encoding for Classical Planning with ces
	3.5 Valid Plan with the Transitive ≺-Encoding.
	3.6 Correctness, Completeness, and Domination
	3.6.1 Correctness and Completeness
	3.6.2 Domination

	3.7 Experimental Analysis
	3.8 Conclusion and Future Work

	4 spp in Numeric Temporal Planning
	4.1 Preliminaries
	4.2 Standard Encodings in smt
	4.3 Temporal Numeric Planning with Patterns
	4.3.1 Pattern and Language Definition
	4.3.2 Rolling Durative Actions
	4.3.3 The Pattern State Encoding
	4.3.4 The Pattern Time Encoding
	4.3.5 Correctness and Completeness Results

	4.4 Experimental Results
	4.5 Conclusion

	5 Boosting spp with Symbolic Search
	5.1 Motivating Example
	5.2 Pushing Numeric Pattern Planning
	5.2.1 Concatenating Patterns
	5.2.2 Changing the Pattern During the Search
	5.2.3 Simplifying the Pattern During the Search

	5.3 PattyF Behaviour on the Motivating Example
	5.4 Experimental Results

	6 Discussion: spp in Applications and Hybrid Planning
	6.1 In-Station Train Dispatching
	6.1.1 Stations, Trains and Nominal Timetable
	6.1.2 States and Commands
	6.1.3 Forecast
	6.1.4 The Dispatchment
	6.1.5 spp for the InSTraDi Problem

	6.2 Hybrid Planning
	6.2.1 Formalism
	6.2.2 spp in Hybrid Planning

	7 Conclusions, Future Work and Algorethic
	7.1 Future Work
	7.2 Algorethic of Planning

	References
	Acknowledgements

